ترغب بنشر مسار تعليمي؟ اضغط هنا

The B3-VLA CSS sample. VIII: New optical identifications from the Sloan Digital Sky Survey. The ultraviolet-optical spectral energy distribution of the young radio sources

48   0   0.0 ( 0 )
 نشر من قبل Alessandra Zanichelli
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Compact steep-spectrum radio sources and giga-hertz peaked spectrum radio sources (CSS/GPS) are generally considered to be mostly young radio sources. In recent years we studied at many wavelengths a sample of these objects selected from the B3-VLA catalog: the B3-VLA CSS sample. Only ~ 60 % of the sources were optically identified. We aim to increase the number of optical identifications and study the properties of the host galaxies of young radio sources. We cross-correlated the CSS B3-VLA sample with the Sloan Digital Sky Survey (SDSS), DR7, and complemented the SDSS photometry with available GALEX (DR 4/5 and 6) and near-IR data from UKIRT and 2MASS. We obtained new identifications and photometric redshifts for eight faint galaxies and for one quasar and two quasar candidates. Overall we have 27 galaxies with SDSS photometry in five bands, for which we derived the ultraviolet-optical spectral energy distribution (UV-O-SED). We extended our investigation to additional CSS/GPS selected from the literature. Most of the galaxies show an excess of ultra-violet (UV) radiation compared with the UV-O-SED of local radio-quiet ellipticals. We found a strong dependence of the UV excess on redshift and analyzed it assuming that it is generated either from the nucleus (hidden quasar) or from a young stellar population (YSP). We also compare the UV-O-SEDs of our CSS/GPS sources with those of a selection of large size (LSO) powerful radio sources from the literature. If the major process of the UV excess is caused by a YSP, our conclusion is that it is the result of the merger process that also triggered the onset of the radio source with some time delay. We do not see evidence for a major contribution from a YSP triggered by the radio sources itself.

قيم البحث

اقرأ أيضاً

The Sloan Digital Sky Survey (SDSS) discovered a few unusual quasars with a characteristic break in the continuum around 3000 A that neither shows the typical structure of broad absorption line (BAL) troughs nor is explained by typical intrinsic dust reddening. We used the method of Kohonen self-organising maps for a systematical search for quasars with such properties in the SDSS spectra archive. We constructed a sample of 23 quasars classified as 3000 A break quasars and two comparison samples of quasars with similar properties, to some extent, but also showing typical BAL features. We computed ensemble-averaged broad-band SEDs based on archival data from SDSS, GALEX, 2MASS, UKIDSS, and WISE. The SEDs were corrected for intrinsic dust absorption by the comparison with the average SED of normal quasars. The de-reddened arithmetic median composite SED of the 3000 A break quasars is found to be indistinguishable from that of the unusual BAL quasars. We conclude that 3000 A break quasars are most likely extre
We identified a large sample of radio quasars, including those with complex radio morphology, from the Sloan Digital Sky Survey (SDSS) and the Faint Images of Radio Sky at Twenty-cm (FIRST). Using this sample, we inspect previous radio quasar samples for selection effects resulting from complex radio morphologies and adopting positional coincidence between radio and optical sources alone. We find that 13.0% and 8.1% radio quasars do not show a radio core within 1.2 and 2 arcsecs of their optical position, and thus are missed in such samples. Radio flux is under-estimated by a factor of more than 2 for an additional 8.7% radio quasars. These missing radio extended quasars are more radio loud with a typical radio-to-optical flux ratio namely radio loudness RL >100, and radio power P >10^{25} W/Hz. They account for more than one third of all quasars with RL>100. The color of radio extended quasars tends to be bluer than the radio compact quasars. This suggests that radio extended quasars are more radio powerful sources, e.g., Fanaroff-Riley type 2 (FR-II) sources, rather than the compact ones viewed at larger inclination angles. By comparison with the radio data from the NRAO VLA Sky Survey (NVSS), we find that for sources with total radio flux less than 3 mJy, low surface brightness components tend to be underestimated by FIRST, indicating that lobes in these faint radio sources are still missed.
We have assembled a large, high quality catalogue of galaxy colours from the Sloan Digital Sky Survey Data Release 7, and have identified 21,347 galaxies in pairs spanning a range of projected separations (r_p < 80 h_{70}^{-1} kpc), relative velociti es (Delta v < 10,000 km/s, which includes projected pairs that are essential for quality control), and stellar mass ratios (from 1:10 to 10:1). We find that the red fraction of galaxies in pairs is higher than that of a control sample matched in stellar mass and redshift, and demonstrate that this difference is likely due to the fact that galaxy pairs reside in higher density environments than non-paired galaxies. We detect clear signs of interaction-induced star formation within the blue galaxies in pairs, as evidenced by a higher fraction of extremely blue galaxies, along with blueward offsets between the colours of paired versus control galaxies. These signs are strongest in close pairs (r_p < 30 h_{70}^{-1} kpc and Delta v < 200 km/s), diminish for more widely separated pairs (r_p > 60 h_{70}^{-1} kpc and Delta v < 200 km/s) and disappear for close projected pairs (r_p < 30 h_{70}^{-1} kpc and Delta v > 3000 km/s). These effects are also stronger in central (fibre) colours than in global colours, and are found primarily in low- to medium-density environments. Conversely, no such trends are seen in red galaxies, apart from a small reddening at small separations which may result from residual errors with photometry in crowded fields. When interpreted in conjunction with a simple model of induced starbursts, these results are consistent with a scenario in which close peri-centre passages trigger induced star formation in the centres of galaxies which are sufficiently gas rich, after which time the galaxies gradually redden as they separate and their starbursts age.
We have combined a sample of 44984 quasars, selected from the Sloan Digital Sky Survey (SDSS) Data Release 3, with the FIRST radio survey. Using a novel technique where the optical quasar position is matched to the complete radio environment within 4 50, we are able to characterize the radio morphological make-up of what is essentially an optically selected quasar sample, regardless of whether the quasar (nucleus) itself has been detected in the radio. About 10% of the quasar population have radio cores brighter than 0.75 mJy at 1.4 GHz, and 1.7% have double lobed FR2-like radio morphologies. About 75% of the FR2 sources have a radio core (> 0.75 mJy). A significant fraction (~40%) of the FR2 quasars are bent by more than 10 degrees, indicating either interactions of the radio plasma with the ICM or IGM. We found no evidence for correlations with redshift among our FR2 quasars: radio lobe flux densities and radio source diameters of the quasars have similar distributions at low (mean 0.77) and high (mean 2.09) redshifts. Using a smaller high reliability FR2 sample of 422 quasars and two comparison samples of radio-quiet and non-FR2 radio-loud quasars, matched in their redshift distributions, we constructed composite optical spectra from the SDSS spectroscopic data. Based on these spectra we can conclude that the FR2 quasars have stronger high-ionization emission lines compared to both the radio quiet and non-FR2 radio loud sources. This is consistent with the notion that the emission lines are brightened by ongoing shock ionization of ambient gas in the quasar host as the radio source expands.
We present a detailed characterization of the 849 broad-line quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Our quasar sample covers a redshift range of 0.1<z<4.5 and is flux-limited to i_PSF<21.7 without any other cuts on quasar properties. The main sample characterization includes: 1) spectral measurements of the continuum and broad emission lines for individual objects from the coadded first-season spectroscopy in 2014; 2) identification of broad and narrow absorption lines in the spectra; 3) optical variability properties for continuum and broad lines from multi-epoch spectroscopy. We provide improved systemic redshift estimates for all quasars, and demonstrate the effects of signal-to-noise ratio on the spectral measurements. We compile measured properties for all 849 quasars along with supplemental multi-wavelength data for subsets of our sample from other surveys. The SDSS-RM sample probes a diverse range in quasar properties, and shows well detected continuum and broad-line variability for many objects from first-season monitoring data. The compiled properties serve as the benchmark for follow-up work based on SDSS-RM data. The spectral fitting tools are made public along with this work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا