ﻻ يوجد ملخص باللغة العربية
The recently-discovered accreting X-ray pulsar IGR J17480--2446 spins at a frequency of ~11 Hz. We show that Type I X-ray bursts from this source display oscillations at the same frequency as the stellar spin. IGR J17480--2446 is the first secure case of a slowly rotating neutron star which shows Type I burst oscillations, all other sources featuring such oscillations spin at hundreds of Hertz. This means that we can test burst oscillation models in a completely different regime. We explore the origin of Type I burst oscillations in IGR J17480--2446 and conclude that they are not caused by global modes in the neutron star ocean. We also show that the Coriolis force is not able to confine an oscillation-producing hot-spot on the stellar surface. The most likely scenario is that the burst oscillations are produced by a hot-spot confined by hydromagnetic stresses.
The low mass X-ray binary (LMXB) IGR J17480-2446 is an 11 Hz accreting pulsar located in the core of the globular cluster Terzan 5. This is a mildly recycled accreting pulsar with a peculiar evolutionary history since its total age has been suggested
Accretion disk winds are revealed in Chandra gratings spectra of black holes. The winds are hot and highly ionized (typically composed of He-like and H-like charge states), and show modest blue-shifts. Similar line spectra are sometimes seen in dippi
We study the spectral state evolution of the Terzan 5 transient neutron star low-mass X-ray binary IGR J17480-2446, and how the best-fit spectral parameters and burst properties evolved with these states, using the Rossi X-ray Timing Explorer data. A
Some globular clusters in our Galaxy are noticeably rich in low-mass X-ray binaries. Terzan 5 has the richest population among globular clusters of X- and radio-pulsars and low-mass X-ray binaries. The detection and study of optical/IR counterparts o
We present a new Chandra observation (performed in July 2016) of the neutron star X-ray transient IGR J17480-2446, located in the globular cluster Terzan 5. We study the continued cooling of the neutron star crust in this system that was heated durin