ترغب بنشر مسار تعليمي؟ اضغط هنا

On families of weakly admissible filtered phi-modules and the adjoint quotient of GL_d

163   0   0.0 ( 0 )
 نشر من قبل Eugen Hellmann
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Eugen Hellmann




اسأل ChatGPT حول البحث

We study the relation of the notion of weak admissibility in families of filtered phi-modules, as considered in a companion paper, with the adjoint quotient. We show that the weakly admissible subset is an open subvariety in the fibers over the adjoint quotient. Further we determine the image of the weakly admissible set in the adjoint quotient generalizing earlier work of Breuil and Schneider.



قيم البحث

اقرأ أيضاً

221 - Eugen Hellmann 2010
We consider stacks of filtered phi-modules over rigid analytic spaces and adic spaces. We show that these modules parametrize p-adic Galois representations of the absolute Galois group of a p-adic field with varying coefficients over an open substack containing all classical points. Further we study a period morphism (defined by Pappas and Rapoport) from a stack parametrizing integral data and determine the image of this morphism.
174 - Eugen Hellmann 2012
We investigate the relation between p-adic Galois representations and overconvergent (phi,Gamma)-modules in families. Especially we construct a natural open subspace of a family of (phi,Gamma)-modules, over which it is induced by a family of Galois-representations.
101 - Robert E. Kottwitz 2006
This paper generalizes the classical theory of Newton polygons from the case of general linear groups to the case of split reductive groups. It also gives a root-theoretic formula for dimensions of Newton strata in the adjoint quotients of reductive groups.
175 - M.E. Rossi , G. Valla 2009
In this presentation we shall deal with some aspects of the theory of Hilbert functions of modules over local rings, and we intend to guide the reader along one of the possible routes through the last three decades of progress in this area of dynamic mathematical activity. Motivated by the ever increasing interest in this field, our goal is to gather together many new developments of this theory into one place, and to present them using a unifying approach which gives self-contained and easier proofs. In this text we shall discuss many results by different authors, following essentially the direction typified by the pioneering work of J. Sally. Our personal view of the subject is most visibly expressed by the presentation of Chapters 1 and 2 in which we discuss the use of the superficial elements and related devices. Basic techniques will be stressed with the aim of reproving recent results by using a more elementary approach. Over the past few years several papers have appeared which extend classical results on the theory of Hilbert functions to the case of filtered modules. The extension of the theory to the case of general filtrations on a module has one more important motivation. Namely, we have interesting applications to the study of graded algebras which are not associated to a filtration, in particular the Fiber cone and the Sally-module. We show here that each of these algebras fits into certain short exact sequences, together with algebras associated to filtrations. Hence one can study the Hilbert function and the depth of these algebras with the aid of the know-how we got in the case of a filtration.
The application of methods of computational algebra has recently introduced new tools for the study of Hilbert schemes. The key idea is to define flat families of ideals endowed with a scheme structure whose defining equations can be determined by al gorithmic procedures. For this reason, several authors developed new methods, based on the combinatorial properties of Borel-fixed ideals, that allow to associate to each ideal $J$ of this type a scheme $mathbf{Mf}_{J}$, called $J$-marked scheme. In this paper we provide a solid functorial foundation to marked schemes and show that the algorithmic procedures introduced in previous papers do not depend on the ring of coefficients. We prove that for all strongly stable ideals $J$, the marked schemes $mathbf{Mf}_{J}$ can be embedded in a Hilbert scheme as locally closed subschemes, and that they are open under suitable conditions on $J$. Finally, we generalize Lederers result about Grobner strata of zero-dimensional ideals, proving that Grobner strata of any ideals are locally closed subschemes of Hilbert schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا