ﻻ يوجد ملخص باللغة العربية
We study the relation of the notion of weak admissibility in families of filtered phi-modules, as considered in a companion paper, with the adjoint quotient. We show that the weakly admissible subset is an open subvariety in the fibers over the adjoint quotient. Further we determine the image of the weakly admissible set in the adjoint quotient generalizing earlier work of Breuil and Schneider.
We consider stacks of filtered phi-modules over rigid analytic spaces and adic spaces. We show that these modules parametrize p-adic Galois representations of the absolute Galois group of a p-adic field with varying coefficients over an open substack
We investigate the relation between p-adic Galois representations and overconvergent (phi,Gamma)-modules in families. Especially we construct a natural open subspace of a family of (phi,Gamma)-modules, over which it is induced by a family of Galois-representations.
This paper generalizes the classical theory of Newton polygons from the case of general linear groups to the case of split reductive groups. It also gives a root-theoretic formula for dimensions of Newton strata in the adjoint quotients of reductive groups.
In this presentation we shall deal with some aspects of the theory of Hilbert functions of modules over local rings, and we intend to guide the reader along one of the possible routes through the last three decades of progress in this area of dynamic
The application of methods of computational algebra has recently introduced new tools for the study of Hilbert schemes. The key idea is to define flat families of ideals endowed with a scheme structure whose defining equations can be determined by al