ﻻ يوجد ملخص باللغة العربية
We examine the equilibrium properties of lattice bosons with attractive on-site interactions in the presence of a three-body hard-core constraint that stabilizes the system against collapse and gives rise to a dimer superfluid phase formed by virtual hopping processes of boson pairs. Employing quantum Monte Carlo simulations, the ground state phase diagram of this system on the square lattice is analyzed. In particular, we study the quantum phase transition between the atomic and dimer superfluid regime and analyze the nature of the superfluid-insulator transitions. Evidence is provided for the existence of a tricritical point along the saturation transition line, where the transition changes from being first-order to a continuous transition of the dilute bose gas of holes. The Berzinskii-Kosterlitz-Thouless transition from the dimer superfluid to the normal fluid is found to be consistent with an anomalous stiffness jump, as expected from the unbinding of half-vortices.
We consider a two-component Bose gas in two dimensions at low temperature with short-range repulsive interaction. In the coexistence phase where both components are superfluid, inter-species interactions induce a nondissipative drag between the two s
We investigate one-dimensional three-body systems composed of two identical bosons and one imbalanced atom (impurity) with two-body and three-body zero-range interactions. For the case in the absence of three-body interaction, we give a complete phas
We study clusters of the type A$_N$B$_M$ with $Nleq Mleq 3$ in a two-dimensional mixture of A and B bosons, with attractive AB and equally repulsive AA and BB interactions. In order to check universal aspects of the problem, we choose two very differ
We investigate the possible existence of the bound state in the system of three bosons interacting with each other via zero-radius potentials in two dimensions (it can be atoms confined in two dimensions or tri-exciton states in heterostructures or d
We investigate the thermal properties of interacting spin-orbit coupled bosons with contact interactions in two spatial dimensions. To that end, we implement the complex Langevin method, motivated by the appearance of a sign problem, on a square latt