ﻻ يوجد ملخص باللغة العربية
The young high-eccentricity binary DQ Tau exhibits powerful recurring millimeter-band (mm) flaring attributed to collisions between the two stellar magnetospheres near periastron, when the stars are separated by only ~8Rstar. These magnetospheric interactions are expected to have scales and magnetic field strengths comparable to those of large X-ray flares from single pre-main-sequence (PMS) stars observed in the Chandra Orion Ultradeep Project (COUP). To search for X-rays arising from processes associated with colliding magnetospheres, we performed simultaneous X-ray and mm observations of DQ Tau near periastron phase. We report here several results. 1) As anticipated, DQ Tau was caught in a flare state in both mm and X-rays. A single long X-ray flare spanned the entire 16.5 hour Chandra exposure. 2) The inferred morphology, duration, and plasma temperature of the X-ray flare are typical of those of large flares from COUP stars. 3) However, our study provides three lines of evidence that this X-ray flare likely arises from colliding magnetospheres: the chance of capturing a large COUP-like flare within the span of our observation is small; the relative timing of the X-ray and mm flares indicates the Neupert effect and is consistent with a common coronal structure; the size of the emitting coronal structure (4-5Rstar) inferred from our analysis (which is admittedly model-dependent and should be considered with caution) is comparable to half the binary separation. 4) The peak flare X-ray luminosity is in agreement with an estimate of the power dissipated by magnetic reconnection within the framework of a simple model of interacting magnetospheres.
We present new ALMA observations of CO $J$=2$-$1 line emission from the DQ Tau circumbinary disk. These data are used to tomographically reconstruct the Keplerian disk velocity field in a forward-modeling inference framework, and thereby provide a dy
Infrared imaging of the colliding-wind binary Apep has revealed a spectacular dust plume with complicated internal dynamics that challenges standard colliding-wind binary physics. Such challenges can be potentially resolved if a rapidly-rotating Wolf
Like other young stellar objects (YSOs), FU Ori-type stars have been detected as strong X-ray emitters. However, little is known about how the outbursts of these stars affect their X-ray properties. We assemble available X-ray data from XMM Newton an
We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of
On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. Preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.