ترغب بنشر مسار تعليمي؟ اضغط هنا

Uv-to-fir analysis of spitzer/irac sources in the extended groth strip i: Multi-wavelength photometry and spectral energy distributions

51   0   0.0 ( 0 )
 نشر من قبل Guillermo Barro
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an IRAC 3.6+4.5 microns selected catalog in the Extended Groth Strip (EGS) containing photometry from the ultraviolet to the far-infrared and stellar parameters derived from the analysis of the multi-wavelength data. In this paper, we describe the method used to build coherent spectral energy distributions (SEDs) for all the sources. In a companion paper, we analyze those SEDs to obtain robust estimations of stellar parameters such as photometric redshifts, stellar masses, and star formation rates. The catalog comprises 76,936 sources with [3.6]<23.75 mag (85% completeness level of the IRAC survey in the EGS) over 0.48 square degrees. For approximately 16% of this sample, we are able to deconvolve the IRAC data to obtain robust fluxes for the multiple counterparts found in ground-based optical images. Typically, the SEDs of the IRAC sources in our catalog count with more than 15 photometric data points, spanning from the UV to the FIR. Approximately 95% and 90% of all IRAC sources are detected in the deepest optical and near-infrared bands. Only 10% of the sources have optical spectroscopy and redshift estimations. Almost 20% and 2% of the sources are detected by MIPS at 24 and 70 microns, respectively. We also cross-correlate our catalog with public X-ray and radio catalogs. Finally, we present the Rainbow Navigator public web-interface utility designed to browse all the data products resulting from this work, including images, spectra, photometry, and stellar parameters.

قيم البحث

اقرأ أيضاً

224 - Guillermo Barro 2011
Based on the ultraviolet to far-infrared photometry already compiled and presented in a companion paper (Barro et al. 2011a, Paper I), we present a detailed SED analysis of nearly 80,000 IRAC 3.6+4.5 micron selected galaxies in the Extended Groth Str ip. We estimate photometric redshifts, stellar masses, and star formation rates separately for each galaxy in this large sample. The catalog includes 76,936 sources with [3.6] < 23.75 (85% completeness level of the IRAC survey) over 0.48 square degrees. The typical photometric redshift accuracy is Delta z/(1+z)=0.034, with a catastrophic outlier fraction of just 2%. We quantify the systematics introduced by the use of different stellar population synthesis libraries and IMFs in the calculation of stellar masses. We find systematic offsets ranging from 0.1 to 0.4 dex, with a typical scatter of 0.3 dex. We also provide UV- and IR-based SFRs for all sample galaxies, based on several sets of dust emission templates and SFR indicators. We evaluate the systematic differences and goodness of the different SFR estimations using the deep FIDEL 70 micron data available in the EGS. Typical random uncertainties of the IR-bases SFRs are a factor of two, with non-negligible systematic effects at z$gtrsim$1.5 observed when only MIPS 24 micron data is available. All data products (SEDs, postage stamps from imaging data, and different estimations of the photometric redshifts, stellar masses, and SFRs of each galaxy) described in this and the companion paper are publicly available, and they can be accessed through our the web-interface utility Rainbow-navigator
81 - Ying-He Zhao 2009
We present $ugR$ optical images taken with the MMT/Megacam and the Subaru/Suprime of the Extended Groth Strip survey. The total survey covers an area of about $sim 1$ degree$^2$, including four sub-fields and is optimized for the study of galaxies at $zsim3$. Our methods for photometric calibration in AB magnitudes, the limiting magnitude and the galaxy number count are described. A sample of 1642 photometrically selected candidate LBGs to an apparent $R_{AB}$ magnitude limit of 25.0 is present. The average sky surface density of our LBGs sample is $sim$ 1.0 arcmin$^{-2}$, slightly higher than the previous finding.
We present a 0.4-8$mu$m multi-wavelength photometric catalog in the Extended Groth Strip (EGS) field. This catalog is built on the Hubble Space Telescope (HST) WFC3 and ACS data from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), and it incorporates the existing HST data from the All-wavelength Extended Groth strip International Survey (AEGIS) and the 3D-HST program. The catalog is based on detections in the F160W band reaching a depth of F160W=26.62 AB (90% completeness, point-sources). It includes the photometry for 41457 objects over an area of $approx 206$ arcmin$^2$ in the following bands: HST ACS F606W and F814W; HST WFC3 F125W, F140W and F160W; CFHT/Megacam $u^*$, $g$, $r$, $i$ and $z$; CFHT/WIRCAM $J$, $H$ and $K_mathrm{S}$; Mayall/NEWFIRM $J1$, $J2$, $J3$, $H1$, $H2$, $K$; Spitzer IRAC $3.6mu$m, $4.5mu$m, $5.8mu$m and $8.0mu$m. We are also releasing value-added catalogs that provide robust photometric redshifts and stellar mass measurements. The catalogs are publicly available through the CANDELS repository.
In this the first of a series of Letters, we present a description of the panchromatic data sets that have been acquired in the Extended Groth Strip region of the sky. Our survey, the All-wavelength Extended Groth strip International Survey (AEGIS), is intended to study the physical properties and evolutionary processes of galaxies at z ~ 1. It includes the following deep, wide-field imaging data sets: Chandra/ACIS X-ray (0.5 - 10 keV), GALEX ultraviolet (1200 - 2500 Angstrom), CFHT/MegaCam Legacy Survey optical (3600 - 9000 Angstroms), CFHT/CFH12K optical (4500 - 9000 Angstroms), Hubble Space Telescope/ACS optical (4400 - 8500 Angstroms), Palomar/WIRC near-infrared (1.2 - 2.2 microns), Spitzer/IRAC mid-infrared (3.6 - 8.0 microns), Spitzer/MIPS far-infrared (24 - 70 microns), and VLA radio continuum (6 - 20 cm). In addition, this region of the sky has been targeted for extensive spectroscopy using the DEIMOS spectrograph on the Keck II 10 m telescope. Our survey is compared to other large multiwavelength surveys in terms of depth and sky coverage.
We investigate galactic-scale outflowing winds in 72 star-forming galaxies at z~1 in the Extended Groth Strip. Galaxies were selected from the DEEP2 survey and follow-up LRIS spectroscopy was obtained covering SiII, CIV, FeII, MgII, and MgI lines in the rest-frame ultraviolet. Using GALEX, HST, and Spitzer imaging, we examine galaxies on a per-object basis in order to understand both the prevalence of galactic winds at z~1 and the star-forming and structural properties of objects experiencing outflows. Gas velocities, measured from the centroids of FeII interstellar absorption lines, span the interval [-217, +155] km/s. We find that ~40% (10%) of the sample exhibits blueshifted FeII lines at the 1-sigma (3-sigma) level. We also measure maximal outflow velocities using the profiles of the FeII and MgII lines, and show that MgII frequently traces higher velocity gas than FeII. Quantitative morphological parameters derived from the HST imaging suggest that mergers are not a prerequisite for driving outflows. More face-on galaxies also show stronger winds than highly-inclined systems, consistent with the canonical picture of winds emanating perpendicular to galactic disks. Using star-formation rates calculated from GALEX data, and areas estimated from HST imaging, we detect a ~3-sigma correlation between outflow velocity and star-formation rate surface density, but only a weak (~1-sigma) trend between outflow velocity and star-formation rate. Higher resolution data are needed in order to test the scaling relations between outflow velocity and both star-formation rate and star-formation rate surface density predicted by theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا