ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniform (2,k)-generation of the 4-dimensional classical groups

71   0   0.0 ( 0 )
 نشر من قبل Marco Pellegrini
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the (2,k)-generation of the finite classical groups SL(4,q), Sp(4,q), SU(4,q^2) and their projective images. Here k is the order of an arbitrary element of SL(2,q), subject to the necessary condition k>= 3. When q is even we allow also k=4.



قيم البحث

اقرأ أيضاً

We give a necessary and sufficient condition for a 2-dimensional or a three-generator Artin group $A$ to be (virtually) cocompactly cubulated, in terms of the defining graph of $A$.
121 - Kasia Jankiewicz 2020
We show that many 2-dimensional Artin groups are residually finite. This includes 3-generator Artin groups with labels $geq$ 3 where either at least one label is even, or at most one label is equal 3. As a first step towards residual finiteness we sh ow that these Artin groups, and many more, split as free products with amalgamation or HNN extensions of finite rank free groups. Among others, this holds for all large type Artin groups with defining graph admitting an orientation, where each simple cycle is directed.
A group G is called bounded if every conjugation-invariant norm on G has finite diameter. We introduce various strengthenings of this property and investigate them in several classes of groups including semisimple Lie groups, arithmetic groups and li near algebraic groups. We provide applications to Hamiltonian dynamics.
Previously, the authors proved that the presentation complex of a one-relator group $G$ satisfies a geometric condition called negative immersions if every two-generator, one-relator subgroup of $G$ is free. Here, we prove that one-relator groups wit h negative immersions are coherent, answering a question of Baumslag in this case. Other strong constraints on the finitely generated subgroups also follow such as, for example, the co-Hopf property. The main new theorem strengthens negative immersions to uniform negative immersions, using a rationality theorem proved with linear-programming techniques.
A subset $S$ of a group $G$ invariably generates $G$ if $G= langle s^{g(s)} | s in Srangle$ for every choice of $g(s) in G,s in S$. We say that a group $G$ is invariably generated if such $S$ exists, or equivalently if $S=G$ invariably generates $G$. In this paper, we study invariable generation of Thompson groups. We show that Thompson group $F$ is invariable generated by a finite set, whereas Thompson groups $T$ and $V$ are not invariable generated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا