ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cosmic Origins Spectrograph: On-Orbit Instrument Performance

64   0   0.0 ( 0 )
 نشر من قبل Steve Osterman
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cosmic Origins Spectrograph (COS) was installed in the Hubble Space Telescope in May, 2009 as part of Servicing Mission 4 to provide high sensitivity, medium and low resolution spectroscopy at far- and near-ultraviolet wavelengths (FUV, NUV). COS is the most sensitive FUV/NUV spectrograph flown to date, spanning the wavelength range from 900{AA} to 3200{AA} with peak effective area approaching 3000 cm^2. This paper describes instrument design, the results of the Servicing Mission Orbital Verification (SMOV), and the ongoing performance monitoring program.

قيم البحث

اقرأ أيضاً

The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosoph y and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F_lambda ~ 1.0E10-14 ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011. COS has measured, for the first time with high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium, and observed the HeII reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.
We describe a space-borne, multi-band, multi-beam polarimeter aiming at a precise and accurate measurement of the polarization of the Cosmic Microwave Background. The instrument is optimized to be compatible with the strict budget requirements of a m edium-size space mission within the Cosmic Vision Programme of the European Space Agency. The instrument has no moving parts, and uses arrays of diffraction-limited Kinetic Inductance Detectors to cover the frequency range from 60 GHz to 600 GHz in 19 wide bands, in the focal plane of a 1.2 m aperture telescope cooled at 40 K, allowing for an accurate extraction of the CMB signal from polarized foreground emission. The projected CMB polarization survey sensitivity of this instrument, after foregrounds removal, is 1.7 {mu}K$cdot$arcmin. The design is robust enough to allow, if needed, a downscoped version of the instrument covering the 100 GHz to 600 GHz range with a 0.8 m aperture telescope cooled at 85 K, with a projected CMB polarization survey sensitivity of 3.2 {mu}K$cdot$arcmin.
We describe the conceptual design of the spectrograph opto-mechanical concept for the SuMIRe Prime Focus Spectrograph (PFS) being developed for the SUBARU telescope. The SuMIRe PFS will consist of four identical spectrographs, each receiving 600 fibe rs from a 2400 fiber robotic positioner at the prime focus. Each spectrograph will have three channels covering in total, a wavelength range from 380 nm to 1300 nm. The requirements for the instrument are summarized in Section 1. We present the optical design and the optical performance and analysis in Section 2. Section 3 introduces the mechanical design, its requirements and the proposed concepts. Finally, the AIT phases for the Spectrograph System are described in Section 5.
The far-ultraviolet (FUV) channel of the Cosmic Origins Spectrograph (COS) is designed to operate between 1130{AA} and 1850{AA}, limited at shorter wavelengths by the reflectivity of the MgF2 protected aluminum reflective surfaces on the Optical Tele scope Assembly and on the COS FUV diffraction gratings. However, because the detector for the FUV channel is windowless, it was recognized early in the design phase that there was the possibility that COS would retain some sensitivity at shorter wavelengths due to the first surface reflection from the MgF2 coated optics. Preflight testing of the flight spare G140L grating revealed ~5% efficiency at 1066{AA}, and early on-orbit observations verified that the COS G140L/1230 mode was sensitive down to at least the Lyman limit with 10-20 cm^2 effective area between 912{AA} and 1070{AA}, and rising rapidly to over 1000 cm2 beyond 1150{AA}. Following this initial work we explored the possibility of using the G130M grating out of band to provide coverage down to 900{AA}. We present calibration results and ray trace simulations for these observing modes and explore additional configurations that have the potential to increase spectroscopic resolution, signal to noise, and observational efficiency below 1130{AA}.
POLAR is a compact space-borne detector designed to perform reliable measurements of the polarization for transient sources like Gamma-Ray Bursts in the energy range 50-500keV. The instrument works based on the Compton Scattering principle with the p lastic scintillators as the main detection material along with the multi-anode photomultiplier tube. POLAR has been launched successfully onboard the Chinese space laboratory TG-2 on 15th September, 2016. In order to reliably reconstruct the polarization information a highly detailed understanding of the instrument is required for both data analysis and Monte Carlo studies. For this purpose a full study of the in-orbit performance was performed in order to obtain the instrument calibration parameters such as noise, pedestal, gain nonlinearity of the electronics, threshold, crosstalk and gain, as well as the effect of temperature on the above parameters. Furthermore the relationship between gain and high voltage of the multi-anode photomultiplier tube has been studied and the errors on all measurement values are presented. Finally the typical systematic error on polarization measurements of Gamma-Ray Bursts due to the measurement error of the calibration parameters are estimated using Monte Carlo simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا