ترغب بنشر مسار تعليمي؟ اضغط هنا

Tricritical point in explosive percolation

111   0   0.0 ( 0 )
 نشر من قبل Nuno A. M. Araujo
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The suitable interpolation between classical percolation and a special variant of explosive percolation enables the explicit realization of a tricritical percolation point. With high-precision simulations of the order parameter and the second moment of the cluster size distribution a fully consistent tricritical scaling scenario emerges yielding the tricritical crossover exponent $1/phi_t=1.8pm0.1$.



قيم البحث

اقرأ أيضاً

The recent work by Achlioptas, DSouza, and Spencer opened up the possibility of obtaining a discontinuous (explosive) percolation transition by changing the stochastic rule of bond occupation. Despite the active research on this subject, several ques tions still remain open about the leading mechanism and the properties of the system. We review the largest cluster and the Gaussian models recently introduced. We show that, to obtain a discontinuous transition it is solely necessary to control the size of the largest cluster, suppressing the growth of a cluster differing significantly, in size, from the average one. As expected for a discontinuous transition, a Gaussian cluster-size distribution and compact clusters are obtained. The surface of the clusters is fractal, with the same fractal dimension of the watershed line.
We investigate the metallic breakdown of a substrate on which highly conducting particles are adsorbed and desorbed with a probability that depends on the local electric field. We find that, by tuning the relative strength $q$ of this dependence, the breakdown can change from continuous to explosive. Precisely, in the limit in which the adsorption probability is the same for any finite voltage drop, we can map our model exactly onto the $q$-state Potts model and thus the transition to a jump occurs at $q=4$. In another limit, where the adsorption probability becomes independent of the local field strength, the traditional bond percolation model is recovered. Our model is thus an example of a possible experimental realization exhibiting a truly discontinuous percolation transition.
We present a simple model of network growth and solve it by writing down the dynamic equations for its macroscopic characteristics like the degree distribution and degree correlations. This allows us to study carefully the percolation transition usin g a generating functions theory. The model considers a network with a fixed number of nodes wherein links are introduced using degree-dependent linking probabilities $p_k$. To illustrate the techniques and support our findings using Monte-Carlo simulations, we introduce the exemplary linking rule $p_k$ proportional to $k^{-alpha}$, with $alpha$ between -1 and plus infinity. This parameter may be used to interpolate between different regimes. For negative $alpha$, links are most likely attached to high-degree nodes. On the other hand, in case $alpha>0$, nodes with low degrees are connected and the model asymptotically approaches a process undergoing explosive percolation.
In the present paper, we study the robustness of two-dimensional random lattices (Delaunay triangulations) under attacks based on betweenness centrality. Together with the standard definition of this centrality measure, we employ a range-limited appr oximation known as $ell$-betweenness, where paths having more than $ell$ steps are ignored. For finite $ell$, the attacks produce continuous percolation transitions that belong to the universality class of random percolation. On the other hand, the attack under the full range betweenness induces a discontinuous transition that, in the thermodynamic limit, occurs after removing a sub-extensive amount of nodes. This behavior is recovered for $ell$-betweenness if the cutoff is allowed to scale with the linear length of the network faster than $ellsim L^{0.91}$. Our results suggest that betweenness centrality encodes information on network robustness at all scales, and thus cannot be approximated using finite-ranged calculations without losing attack efficiency.
We study the spin-boson model (SBM) with two spins in staggered biases by a numerically exact method based on variational matrix product states. Several observables such as the magnetization, the entanglement entropy between the two spins and the bos onic environment, the ground-state energy, as well as the correlation function for two spins are calculated exactly. The characteristics of these observables suggest that the staggered biases can drive the 2nd-order quantum phase transition (QPT) to the 1st-order QPT in the sub-Ohmic SBM, while the Kosterlitz-Thouless QPT in the Ohmic SBM goes directly to the 1st-order one. A quantum tricritical point, where the continuous QPT meets the 1st-order one, can then be detected. It is found that the staggered biases would not change the universality of { the phase transition in this model} below the quantum tricritical point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا