ترغب بنشر مسار تعليمي؟ اضغط هنا

W-jet Tagging: Optimizing the Identification of Boosted Hadronically-Decaying W Bosons

156   0   0.0 ( 0 )
 نشر من قبل Zhenyu Han
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A method is proposed for distinguishing highly boosted hadronically decaying Ws (W-jets) from QCD-jets using jet substructure. Previous methods, such as the filtering/mass-drop method, can give a factor of ~2 improvement in S/sqrt(B) for jet pT > 200 GeV. In contrast, a multivariate approach including new discriminants such as R-cores, which characterize the shape of the W-jet, subjet planar flow, and grooming-sensitivities is shown to provide a much larger factor of ~5 improvement in S/sqrt(B). For longitudinally polarized Ws, such as those coming from many new physics models, the discrimination is even better. Comparing different Monte Carlo simulations, we observe a sensitivity of some variables to the underlying event; however, even with a conservative estimates, the multivariate approach is very powerful. Applications to semileptonic WW resonance searches and all-hadronic W+jet searches at the LHC are also discussed. Code implementing our W-jet tagging algorithm is publicly available at http://jets.physics.harvard.edu/wtag



قيم البحث

اقرأ أيضاً

In this work, we present a new technique to measure the longitudinal and transverse polarization fractions of hadronic decays of boosted $W$ bosons. We introduce a new jet substructure observable denoted as $p_theta$, which is a proxy for the parton level decay polar angle of the $W$ boson in its rest-frame. We show that the distribution of this observable is sensitive to the polarization of $W$ bosons and can therefore be used to reconstruct the $W$ polarization in a model-independent way. As a test case, we study the efficacy of our technique on vector boson scattering processes at the high luminosity Large Hadron Collider and we find that our technique can determine the longitudinal polarization fraction to within $pm 0.15$. We also show that our technique can be used to identify the parity of beyond Standard Model scalar or pseudo-scalar resonances decaying to $W$ bosons with just 20 events.
We show that the signature of two boosted $W$-jets plus large missing energy is very promising to probe heavy charged resonances ($X^pm$) through the process of $ppto X^+X^-to W^+W^- X^0 X^0$ where $X^0$ denotes dark matter candidate. The hadronic de cay mode of the $W$ boson is considered to maximize the number of signal events. When the mass split between $X^pm$ and $X^0$ is large, one has to utilize the jet-substructure technique to analyze the boosted $W$-jet. For illustration we consider the process of chargino pair production at the LHC, i.e., $ppto chi_1^+chi^-_1 to W^+W^-chi_1^0chi_1^0$, and demonstrate that the proposed signature is able to cover more parameter space of $m_{chi_1^pm}$ and $m_{chi_1^0}$ than the conventional signature of multiple leptons plus missing energy. More importantly, the signature of our interests is not sensitive to the spin of heavy resonances.
234 - J. Campbell 2009
We calculate the production of a W boson and a single b jet to next-to-leading order in QCD at the Fermilab Tevatron and the CERN Large Hadron Collider. Both exclusive and inclusive cross sections are presented. We separately consider the cross secti on for jets containing a single b quark and jets containing a b-anti b pair. There are a wide variety of processes that contribute, and it is necessary to include them all in order to have a complete description at both colliders.
In this work we present the implementation of generators for W and Z bosons in association with two jets interfaced to parton showers using the POWHEG BOX. We incorporate matrix elements from the parton-level Monte Carlo program MCFM in the POWHEG BO X, allowing for a considerable improvement in speed compared to previous implementations. We address certain problems that arise when processes that are singular at the Born level are implemented in a shower framework using either a generation cut or a Born suppression factor to yield weighted events. In such a case, events with very large weights can be generated after the shower through a number of mechanisms. Events with very small transverse momentum at the Born level can develop large transverse momentum either after the hardest emission, after the shower, or after the inclusion of multi-parton interactions. We present a solution to this problem that can be easily implemented in the POWHEG BOX. We also show that a full solution to this problem can only be achieved if the generator maintains physical validity also when the transverse momentum of the emitted partons becomes unresolved. One such scheme is the recently-proposed MiNLO method for the choice of scale and the exponentiation of Sudakov form factors in NLO computations. We present a validation study of our generators, by comparing their output to available LHC data.
We present an implementation of the vector boson pair production processes ZZ, W+W- and WZ within the POWHEG BOX V2. This implementation, derived from the POWHEG BOX version, has several improvements over the old one, among which the inclusion of all decay modes of the vector bosons, the possibility to generate different decay modes in the same run, speed optimization and phase space improvements in the handling of interference and singly resonant contributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا