ﻻ يوجد ملخص باللغة العربية
A method is proposed for distinguishing highly boosted hadronically decaying Ws (W-jets) from QCD-jets using jet substructure. Previous methods, such as the filtering/mass-drop method, can give a factor of ~2 improvement in S/sqrt(B) for jet pT > 200 GeV. In contrast, a multivariate approach including new discriminants such as R-cores, which characterize the shape of the W-jet, subjet planar flow, and grooming-sensitivities is shown to provide a much larger factor of ~5 improvement in S/sqrt(B). For longitudinally polarized Ws, such as those coming from many new physics models, the discrimination is even better. Comparing different Monte Carlo simulations, we observe a sensitivity of some variables to the underlying event; however, even with a conservative estimates, the multivariate approach is very powerful. Applications to semileptonic WW resonance searches and all-hadronic W+jet searches at the LHC are also discussed. Code implementing our W-jet tagging algorithm is publicly available at http://jets.physics.harvard.edu/wtag
In this work, we present a new technique to measure the longitudinal and transverse polarization fractions of hadronic decays of boosted $W$ bosons. We introduce a new jet substructure observable denoted as $p_theta$, which is a proxy for the parton
We show that the signature of two boosted $W$-jets plus large missing energy is very promising to probe heavy charged resonances ($X^pm$) through the process of $ppto X^+X^-to W^+W^- X^0 X^0$ where $X^0$ denotes dark matter candidate. The hadronic de
We calculate the production of a W boson and a single b jet to next-to-leading order in QCD at the Fermilab Tevatron and the CERN Large Hadron Collider. Both exclusive and inclusive cross sections are presented. We separately consider the cross secti
In this work we present the implementation of generators for W and Z bosons in association with two jets interfaced to parton showers using the POWHEG BOX. We incorporate matrix elements from the parton-level Monte Carlo program MCFM in the POWHEG BO
We present an implementation of the vector boson pair production processes ZZ, W+W- and WZ within the POWHEG BOX V2. This implementation, derived from the POWHEG BOX version, has several improvements over the old one, among which the inclusion of all