ﻻ يوجد ملخص باللغة العربية
Stellar pulsation theory provides a means of determining the masses of pulsating classical Cepheid supergiant - it is the pulsation that causes their luminosity to vary. Such pulsational masses are found to be smaller than the masses derived from stellar evolution theory: this is the Cepheid mass discrepancy problem, for which a solution is missing. An independent, accurate dynamical mass determination for a classical Cepheid variable star (as opposed to type-II Cepheids, low-mass stars with a very different evolutionary history) in a binary system is needed in order to determine which is correct. The accuracy of previous efforts to establish a dynamical Cepheid mass from Galactic single-lined noneclipsing binaries was typically about 15-30 per cent, which is not good enough to resolve the mass discrepancy problem. In spite of many observational efforts, no firm detection of a classical Cepheid in an eclipsing double-lined binary has hitherto been reported. Here we report the discovery of a classical Cepheid in a well detached, double-lined eclipsing binary in the Large Magellanic Cloud. We determine the mass to a precision of one per cent and show that it agrees with its pulsation mass, providing strong evidence that pulsation theory correctly and precisely predicts the masses of classical Cepheids
We have analyzed the double-lined eclipsing binary system OGLE-LMC-CEP-1812 in the LMC and demonstrate that it contains a classical fundamental mode Cepheid pulsating with a period of 1.31 days. The secondary star is a stable giant. We derive the dyn
Cool subdwarfs are metal-poor low-mass stars that formed during the early stages of the evolution of our Galaxy. Because they are relatively rare in the vicinity of the Sun, we know of few cool subdwarfs in the solar neighbourhood, and none with both
BVR light curves and radial velocities for the double-lined eclipsing binary V1135,Her were obtained. The brighter component of V1135,Her is a Cepheid variable with a pulsation period of 4.22433$pm$0.00026 days. The orbital period of the system is ab
We present a detailed study of the classical Cepheid in the double-lined, highly eccentric eclipsing binary system OGLE-LMC562.05.9009. The Cepheid is a fundamental mode pulsator with a period of 2.988 days. The orbital period of the system is 1550 d
Multi-color light curves and radial velocities for TYC,1031,1262,1 have been obtained and analyzed. TYC,1031,1262,1 includes a Cepheid with a period of 4.15270$pm$0.00061 days. The orbital period of the system is about 51.2857$pm$0.0174 days. The pul