ﻻ يوجد ملخص باللغة العربية
Operation of an X-ray spectrometer based on a spherical variable line spacing grating is analyzed using dedicated ray-tracing software allowing fast optimization of the grating parameters and spectrometer geometry. The analysis is illustrated with optical design of a model spectrometer to deliver a resolving power above 20400 at photon energy of 930 eV (Cu L-edge). With this energy taken as reference, the VLS coefficients are optimized to cancel the lineshape asymmetry (mostly from the coma aberrations) as well as minimize the symmetric aberration broadening at large grating illuminations, dramatically increasing the aberration-limited vertical acceptance of the spectrometer. For any energy away from the reference, we evaluate corrections to the entrance arm and light incidence angle on the grating to maintain the exactly symmetric lineshape. Furthermore, we evaluate operational modes when these corrections are coordinated to maintain either energy independent focal curve inclination or maximal aberration-limited spectrometer acceptance. The results are supported by analytical evaluation of the coma term of the optical path function. Our analysis gives thus a recipe to design a high-resolution spherical VLS grating spectrometer operating with negligible aberrations at large acceptance and over extended energy range.
We reported the usage of grating-based X-ray phase-contrast imaging in nondestructive testing of grating imperfections. It was found that electroplating flaws could be easily detected by conventional absorption signal, and in particular, we observed
We use narrow spectral lines from the x-ray spectra of various highlycharged ions to measure low-energy tail-like deviations from a Gaussian responsefunction in a microcalorimter x-ray spectrometer with Au absorbers at energiesfrom 650 eV to 3320 eV.
Following the recent developement of Fourier ptychographic microscopy (FPM) in the visible range by Zheng et al. (2013), we propose an adaptation for hard x-rays. FPM employs ptychographic reconstruction to merge a series of low-resolution, wide fiel
Significant systematic errors in high-precision Penning trap mass spectrometry can result from electric and magnetic field imperfections. An experimental procedure to minimize these uncertainties is presented for the on-line Penning trap mass spectro
We present a gradient-based algorithm to design general 1D grating couplers without any human input from start to finish, including a choice of initial condition. We show that we can reliably design efficient couplers to have multiple functionalities