ﻻ يوجد ملخص باللغة العربية
HgTe/HgCdTe quantum wells with the inverted band structure have been probed using far infrared magneto-spectroscopy. Realistic calculations of Landau level diagrams have been performed to identify the observed transitions. Investigations have been greatly focused on the magnetic field dependence of the peculiar pair of zero-mode Landau levels which characteristically split from the upper conduction and bottom valence bands, and merge under the applied magnetic field. The observed avoided crossing of these levels is tentatively attributed to the bulk inversion asymmetry of zinc blend compounds.
We report on the far-infrared magnetospectroscopy of HgTe quantum wells with inverted band ordering at different electron concentrations. We particularly focus on optical transitions from zero-mode Landau levels, which split from the edges of electro
The double quantum well systems consisting of two HgTe layers separated by a tunnel-transparent barrier are expected to manifest a variety of phase states including two-dimensional gapless semimetal and two-dimensional topological insulator. The pres
We present both the experimental and theoretical investigation of a non-trivial electron Landau levels shift in magnetic field in wide ~20 nm HgTe quantum wells: Landau levels split under magnetic fields but become degenerate again when magnetic fiel
We study the effects of electron-hole asymmetry on the electronic structure of helical edge states in HgTe/HgCdTe quantum wells. In the framework of the four-band kp-model, which takes into account the absence of a spatial inversion centre, we obtain
Landau level spectroscopy has been employed to probe the electronic structure of the valence band in a series of p-type HgTe/HgCdTe quantum wells with both normal and inverted ordering of bands. We find that the standard axial-symmetric 4-band Kane m