ترغب بنشر مسار تعليمي؟ اضغط هنا

A web-tool for population synthesis of near-by cooling neutron stars: An on-line test for cooling curves

54   0   0.0 ( 0 )
 نشر من قبل Sergei Popov B.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new web-tool - Net-PSICoNS - for population synthesis of isolated near-by cooling neutron stars (NSs). The main aim is to provide an easy test of models of the NS thermal evolution which can be used by groups studying this subject. A user can upload cooling curves for a set of masses, modify the mass spectrum if necessary, change radii to fit the EoS used for cooling curve calculations, and then a population synthesis of close-by isolated cooling NSs is performed. The output includes the Log N -- Log S distribution confronted with the ROSAT observations and several other sets of data. In this paper, we summarize the idea of the test proposed by Popov et al. (2006), and present a users manual for the web-tool.

قيم البحث

اقرأ أيضاً

The thermal evolution of isothermal neutron stars is studied with matter both in the hadronic phase as well as in the mixed phase of hadronic matter and strange quark matter. In our models, the dominant early-stage cooling process is neutrino emissio n via the direct Urca process. As a consequence, the cooling curves fall too fast compared to observations. However, when superfluidity is included, the cooling of the neutron stars is significantly slowed down. Furthermore, we find that the cooling curves are not very sensitive to the precise details of the mixing between the hadronic phase and the quark phase and also of the pairing that leads to superfluidity.
We present a new set of cooling models and isochrones for both H- and He-atmosphere white dwarfs, incorporating accurate boundary conditions from detailed model atmosphere calculations, and carbon-oxygen chemical abundance profiles based on updated s tellar evolution calculations from the BaSTI stellar evolution archive - a theoretical data center for the Virtual Observatory. We discuss and quantify the uncertainties in the cooling times predicted by the models, arising from the treatment of mixing during the central H- and He-burning phases, number of thermal pulses experienced by the progenitors, progenitor metallicity and the $^{12}C(alpha,gamma)^{16}O$ reaction rate. The largest sources of uncertainty turn out to be related to the treatment of convection during the last stages of the progenitor central He-burning phase, and the $^{12}C(alpha,gamma)^{16}O$ reaction rate. We compare our new models to previous calculations performed with the same stellar evolution code, and discuss their application to the estimate of the age of the solar neighborhood, and the interpretation of the observed number ratios between H- and He-atmosphere white dwarfs. The new white dwarf sequences and an extensive set of white dwarf isochrones that cover a large range of ages and progenitor metallicities are made publicly available at the official BaSTI website.
The study of neutron stars is a topic of central interest in the investigation of the properties of strongly compressed hadronic matter. Whereas in heavy-ion collisions the fireball, created in the collision zone, contains very hot matter, with varyi ng density depending on the beam energy, neutron stars largely sample the region of cold and dense matter with the exception of the very short time period of the existence of the proto-neutron star. Therefore, neutron star physics, in addition to its general importance in astrophysics, is a crucial complement to heavy-ion physics in the study of strongly interacting matter. In the following, model approaches will be introduced to calculate properties of neutron stars that incorporate baryons and quarks. These approaches are also able to describe the state of matter over a wide range of temperatures and densities, which is essential if one wants to connect and correlate star observables and results from heavy-ion collisions. The effect of exotic particles and quark cores on neutron star properties will be considered. In addition to the gross properties of the stars like their masses and radii their expected inner composition is quite sensitive to the models used. The effect of the composition can be studied through the analysis of the cooling curve of the star. In addition, we consider the effect of rotation, as in this case the particle composition of the star can be modified quite drastically.
Observations of thermal radiation from neutron stars can potentially provide information about the states of supranuclear matter in the interiors of these stars with the aid of the theory of neutron-star thermal evolution. We review the basics of thi s theory for isolated neutron stars with strong magnetic fields, including most relevant thermodynamic and kinetic properties in the stellar core, crust, and blanketing envelopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا