ﻻ يوجد ملخص باللغة العربية
Very recently, two new hexagonal rhenium sub-nitrides Re3N and Re2N, which belong to a rather rare group of known metal-rich (M/N > 1) nitrides of heavy 4d,5d metals, have been successfully synthesized, and their potential technological applications as ultra-incompressible materials have been proposed. In this work we present a detailed ab initio study of novel rhenium sub-nitrides in comparison with hcp-Re and wurtzite-like rhenium mono-nitride ReN, with the purpose to evaluate the trends of the elastic, electronic properties and chemical bonding in the series of these hexagonal systems as a function of the Re/N stoichiometry: Re rightarrow Re3N rightarrow Re2N rightarrow ReN.
By means of first-principles calculations, the structural stability, mechanical properties and electronic structure of the newly synthesized incompressible Re2C, Re2N, Re3N and an analogous compound Re3C have been investigated. Our results agree well
Atomic-scale investigation on mechanical behaviors is highly necessary to fully understand the fracture mechanics especially of brittle materials, which are determined by atomic-scale phenomena (e.g., lattice trapping). Here, exfoliated anisotropic r
Laser heating of rhenium in a diamond anvil cell to 3000 K at about 200 GPa results in formation of two previously unknown rhenium carbides, hexagonal WC-type structured ReC and orthorhombic TiSi2-type structured ReC2. The Re-C slid solution formed a
Single crystals of KSbO3-type rhenium oxides, La4Re6O$19, Pb6Re6O19, Sr2Re3O9 and Bi3Re3O11, were synthesized by a hydrothermal method. Their crystal structures can be regarded as a network of three-dimensional orthogonal-dimer lattice of edge-shared
Transition metal surfaces catalyse a broad range of thermally-activated reactions involving carbon-containing-species -- from atomic carbon to small hydrocarbons or organic molecules, and polymers. These reactions yield well-separated phases, for ins