ﻻ يوجد ملخص باللغة العربية
Motivated by previous suggestions that three-body hard-core interactions in lower-dimensional ultracold Bose gases might provide a way for creation of non-Abelian anyons, the exact ground state of a harmonically trapped 1D Bose gas with three-body hard-core interactions is constructed by duality mapping, starting from an $N$-particle ideal gas of mixed symmetry with three-body nodes, which has double occupation of the lowest harmonic oscillator orbital and single occupation of the next $N-2$ orbitals. It has some similarity to the ground state of a Tonks-Girardeau gas, but is more complicated. It is proved that in 1D any system of $Nge 3$ bosons with three-body hard-core interactions also has two-body soft-core interactions of generalized Lieb-Liniger delta function form, as a consequence of the topology of the configuration space of $N$ particles in 1D, i.e., wave functions with emph{only} three-body hard core zeroes are topologically impossible. This is in contrast with the case of 2D, where pure three-body hard-core interactions do exist, and are closely related to the fractional quantized Hall effect. The exact ground state is compared with a previously-proposed Pfaffian-like approximate ground state, which satisfies the three-body hard-core constraint but is not an exact energy eigenstate. Both the exact ground state and the Pfaffian-like approximation imply two-body soft-core interactions as well as three-body hard-core interactions, in accord with the general topological proof.
Traditional anyons in two dimensions have generalized exchange statistics governed by the braid group. By analyzing the topology of configuration space, we discover that an alternate generalization of the symmetric group governs particle exchanges wh
We predict the existence of a dip below unity in the second-order coherence function of a partially condensed ideal Bose gas in harmonic confinement, signaling the anticorrelation of density fluctuations in the sample. The dip in the second-order coh
We employ the (dynamical) density matrix renormalization group technique to investigate the ground-state properties of the Bose-Hubbard model with nearest-neighbor transfer amplitudes t and local two-body and three-body repulsion of strength U and W,
We study a system of two bosons of one species and a third boson of a second species in a one-dimensional parabolic trap at zero temperature. We assume contact repulsive inter- and intra-species interactions. By means of an exact diagonalization meth
We solve the three-boson problem with contact two- and three-body interactions in one dimension and analytically calculate the ground and excited trimer-state energies. Then, by using the diffusion Monte Carlo technique we calculate the binding energ