ﻻ يوجد ملخص باللغة العربية
Let $A$ be an irreducible Coxeter arrangement and $bfk$ be a multiplicity of $A$. We study the derivation module $D(A, bfk)$. Any two-dimensional irreducible Coxeter arrangement with even number of lines is decomposed into two orbits under the action of the Coxeter group. In this paper, we will {explicitly} construct a basis for $D(A, bfk)$ assuming $bfk$ is constant on each orbit. Consequently we will determine the exponents of $(A, bfk)$ under this assumption. For this purpose we develop a theory of universal derivations and introduce a map to deal with our exceptional cases.
Let $A$ be an irreducible Coxeter arrangement and $W$ be its Coxeter group. Then $W$ naturally acts on $A$. A multiplicity $bfm : Arightarrow Z$ is said to be equivariant when $bfm$ is constant on each $W$-orbit of $A$. In this article, we prove that
Let $W$ be a finite irreducible real reflection group, which is a Coxeter group. We explicitly construct a basis for the module of differential 1-forms with logarithmic poles along the Coxeter arrangement by using a primitive derivation. As a consequ
Let B be a real hyperplane arrangement which is stable under the action of a Coxeter group W. Then B acts naturally on the set of chambers of B. We assume that B is disjoint from the Coxeter arrangement A=A(W) of W. In this paper, we show that the W-
In his affirmative answer to the Edelman-Reiner conjecture, Yoshinaga proved that the logarithmic derivation modules of the cones of the extended Shi arrangements are free modules. However, all we know about the bases is their existence and degrees.
Let $mathcal{L}$ be the derivation Lie algebra of ${mathbb C}[t_1^{pm 1},t_2^{pm 1}]$. Given a triangle decomposition $mathcal{L} =mathcal{L}^{+}oplusmathfrak{h}oplusmathcal{L}^{-}$, we define a nonsingular Lie algebra homomorphism $psi:mathcal{L}^