ترغب بنشر مسار تعليمي؟ اضغط هنا

Maximum Likelihood Joint Tracking and Association in a Strong Clutter without Combinatorial Complexity

268   0   0.0 ( 0 )
 نشر من قبل Leonid Perlovsky
 تاريخ النشر 2010
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed an efficient algorithm for the maximum likelihood joint tracking and association problem in a strong clutter for GMTI data. By using an iterative procedure of the dynamic logic process from vague-to-crisp, the new tracker overcomes combinatorial complexity of tracking in highly-cluttered scenarios and results in a significant improvement in signal-to-clutter ratio.



قيم البحث

اقرأ أيضاً

The Schrodinger bridge problem (SBP) finds the most likely stochastic evolution between two probability distributions given a prior stochastic evolution. As well as applications in the natural sciences, problems of this kind have important applicatio ns in machine learning such as dataset alignment and hypothesis testing. Whilst the theory behind this problem is relatively mature, scalable numerical recipes to estimate the Schrodinger bridge remain an active area of research. We prove an equivalence between the SBP and maximum likelihood estimation enabling direct application of successful machine learning techniques. We propose a numerical procedure to estimate SBPs using Gaussian process and demonstrate the practical usage of our approach in numerical simulations and experiments.
Mixture of Experts (MoE) are successful models for modeling heterogeneous data in many statistical learning problems including regression, clustering and classification. Generally fitted by maximum likelihood estimation via the well-known EM algorith m, their application to high-dimensional problems is still therefore challenging. We consider the problem of fitting and feature selection in MoE models, and propose a regularized maximum likelihood estimation approach that encourages sparse solutions for heterogeneous regression data models with potentially high-dimensional predictors. Unlike state-of-the art regularized MLE for MoE, the proposed modelings do not require an approximate of the penalty function. We develop two hybrid EM algorithms: an Expectation-Majorization-Maximization (EM/MM) algorithm, and an EM algorithm with coordinate ascent algorithm. The proposed algorithms allow to automatically obtaining sparse solutions without thresholding, and avoid matrix inversion by allowing univariate parameter updates. An experimental study shows the good performance of the algorithms in terms of recovering the actual sparse solutions, parameter estimation, and clustering of heterogeneous regression data.
We advocate for a practical Maximum Likelihood Estimation (MLE) approach for regression and forecasting, as an alternative to the typical approach of Empirical Risk Minimization (ERM) for a specific target metric. This approach is better suited to ca pture inductive biases such as prior domain knowledge in datasets, and can output post-hoc estimators at inference time that can optimize different types of target metrics. We present theoretical results to demonstrate that our approach is always competitive with any estimator for the target metric under some general conditions, and in many practical settings (such as Poisson Regression) can actually be much superior to ERM. We demonstrate empirically that our method instantiated with a well-designed general purpose mixture likelihood family can obtain superior performance over ERM for a variety of tasks across time-series forecasting and regression datasets with different data distributions.
This article investigates the origin of numerical issues in maximum likelihood parameter estimation for Gaussian process (GP) interpolation and investigates simple but effective strategies for improving commonly used open-source software implementati ons. This work targets a basic problem but a host of studies, particularly in the literature of Bayesian optimization, rely on off-the-shelf GP implementations. For the conclusions of these studies to be reliable and reproducible, robust GP implementations are critical.
175 - Fei Ye , Adrian G. Bors 2021
Learning disentangled and interpretable representations is an important step towards accomplishing comprehensive data representations on the manifold. In this paper, we propose a novel representation learning algorithm which combines the inference ab ilities of Variational Autoencoders (VAE) with the generalization capability of Generative Adversarial Networks (GAN). The proposed model, called InfoVAEGAN, consists of three networks~: Encoder, Generator and Discriminator. InfoVAEGAN aims to jointly learn discrete and continuous interpretable representations in an unsupervised manner by using two different data-free log-likelihood functions onto the variables sampled from the generators distribution. We propose a two-stage algorithm for optimizing the inference network separately from the generator training. Moreover, we enforce the learning of interpretable representations through the maximization of the mutual information between the existing latent variables and those created through generative and inference processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا