ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting Complex Moments For 2D Shape Representation and Image Normalization

126   0   0.0 ( 0 )
 نشر من قبل Pedro Aguiar
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

When comparing 2D shapes, a key issue is their normalization. Translation and scale are easily taken care of by removing the mean and normalizing the energy. However, defining and computing the orientation of a 2D shape is not so simple. In fact, although for elongated shapes the principal axis can be used to define one of two possible orientations, there is no such tool for general shapes. As we show in the paper, previous approaches fail to compute the orientation of even noiseless observations of simple shapes. We address this problem. In the paper, we show how to uniquely define the orientation of an arbitrary 2D shape, in terms of what we call its Principal Moments. We show that a small subset of these moments suffice to represent the underlying 2D shape and propose a new method to efficiently compute the shape orientation: Principal Moment Analysis. Finally, we discuss how this method can further be applied to normalize grey-level images. Besides the theoretical proof of correctness, we describe experiments demonstrating robustness to noise and illustrating the method with real images.

قيم البحث

اقرأ أيضاً

Image representation is an important topic in computer vision and pattern recognition. It plays a fundamental role in a range of applications towards understanding visual contents. Moment-based image representation has been reported to be effective i n satisfying the core conditions of semantic description due to its beneficial mathematical properties, especially geometric invariance and independence. This paper presents a comprehensive survey of the orthogonal moments for image representation, covering recent advances in fast/accurate calculation, robustness/invariance optimization, definition extension, and application. We also create a software package for a variety of widely-used orthogonal moments and evaluate such methods in a same base. The presented theory analysis, software implementation, and evaluation results can support the community, particularly in developing novel techniques and promoting real-world applications.
139 - Tao Yu , Zongyu Guo , Xin Jin 2019
Feature Normalization (FN) is an important technique to help neural network training, which typically normalizes features across spatial dimensions. Most previous image inpainting methods apply FN in their networks without considering the impact of t he corrupted regions of the input image on normalization, e.g. mean and variance shifts. In this work, we show that the mean and variance shifts caused by full-spatial FN limit the image inpainting network training and we propose a spatial region-wise normalization named Region Normalization (RN) to overcome the limitation. RN divides spatial pixels into different regions according to the input mask, and computes the mean and variance in each region for normalization. We develop two kinds of RN for our image inpainting network: (1) Basic RN (RN-B), which normalizes pixels from the corrupted and uncorrupted regions separately based on the original inpainting mask to solve the mean and variance shift problem; (2) Learnable RN (RN-L), which automatically detects potentially corrupted and uncorrupted regions for separate normalization, and performs global affine transformation to enhance their fusion. We apply RN-B in the early layers and RN-L in the latter layers of the network respectively. Experiments show that our method outperforms current state-of-the-art methods quantitatively and qualitatively. We further generalize RN to other inpainting networks and achieve consistent performance improvements.
125 - Zewen He , He Huang , Yudong Wu 2019
Scale variation remains a challenging problem for object detection. Common paradigms usually adopt multiscale training & testing (image pyramid) or FPN (feature pyramid network) to process objects in a wide scale range. However, multi-scale methods a ggravate more variations of scale that even deep convolution neural networks with FPN cannot handle well. In this work, we propose an innovative paradigm called Instance Scale Normalization (ISN) to resolve the above problem. ISN compresses the scale space of objects into a consistent range (ISN range), in both training and testing phases. This reassures the problem of scale variation fundamentally and reduces the difficulty of network optimization. Experiments show that ISN surpasses multi-scale counterpart significantly for object detection, instance segmentation, and multi-task human pose estimation, on several architectures. On COCO test-dev, our single model based on ISN achieves 46.5 mAP with a ResNet-101 backbone, which is among the state-of-the-art (SOTA) candidates for object detection.
Traditional convolution-based generative adversarial networks synthesize images based on hierarchical local operations, where long-range dependency relation is implicitly modeled with a Markov chain. It is still not sufficient for categories with com plicated structures. In this paper, we characterize long-range dependence with attentive normalization (AN), which is an extension to traditional instance normalization. Specifically, the input feature map is softly divided into several regions based on its internal semantic similarity, which are respectively normalized. It enhances consistency between distant regions with semantic correspondence. Compared with self-attention GAN, our attentive normalization does not need to measure the correlation of all locations, and thus can be directly applied to large-size feature maps without much computational burden. Extensive experiments on class-conditional image generation and semantic inpainting verify the efficacy of our proposed module.
We aim to detect pancreatic ductal adenocarcinoma (PDAC) in abdominal CT scans, which sheds light on early diagnosis of pancreatic cancer. This is a 3D volume classification task with little training data. We propose a two-stage framework, which firs t segments the pancreas into a binary mask, then compresses the mask into a shape vector and performs abnormality classification. Shape representation and classification are performed in a joint manner, both to exploit the knowledge that PDAC often changes the shape of the pancreas and to prevent over-fitting. Experiments are performed on 300 normal scans and 136 PDAC cases. We achieve a specificity of 90.2% (false alarm occurs on less than 1/10 normal cases) at a sensitivity of 80.2% (less than 1/5 PDAC cases are not detected), which show promise for clinical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا