ﻻ يوجد ملخص باللغة العربية
The Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) monitored 51 sub-arcsecond binary systems to determine precision binary orbits, study the geometries of triple and quadruple star systems, and discover previously unknown faint astrometric companions as small as giant planets. PHASES measurements made with the Palomar Testbed Interferometer (PTI) from 2002 until PTI ceased normal operations in late 2008 are presented. Infrared differential photometry of several PHASES targets were measured with Keck Adaptive Optics and are presented.
The Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) monitored 51 subarcsecond binary systems to evaluate whether tertiary companions as small as Jovian planets orbited either the primary or secondary stars, perturbing their o
The Palomar High-precision Astrometric Search for Exoplanet Systems monitored 51 subarcsecond binary systems to evaluate whether tertiary companions as small as Jovian planets orbited either the primary or secondary stars, perturbing their otherwise
(Abridged) Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) are used to constrain the astrometric orbit of the previously known lesssim 2 day subsystem in the triple system 63 Gem
Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems have been combined with lower precision single-aperture measurements covering a much longer timespan (from eyepiece measurements, speckle in
The Large sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest optical telescope in China. In last four years, the LAMOST telescope has published four editions data (pilot data release, data release 1, data release 2 and data r