ﻻ يوجد ملخص باللغة العربية
The effect of the AlOx barrier thickness on magnetic and morphological properties of Ta/Co/(AlOx)/Alq3/Si hybrid structures was systematically studied by means of atomic force microscopy, SQUID magnetometry and nuclear magnetic resonance (NMR). All used techniques pointed out that the barrier thickness of 2 nm is required to obtain a magnetically good cobalt layer on top of Alq3. 59Co NMR measurements revealed that the AlOx barrier gives rise to the formation of an interface layer with defective cobalt favouring growth of bulk cobalt with good magnetic properties.
Investigation of the spin Hall effect in gold has triggered increasing interest over the past decade, since gold combines the properties of a large bulk spin diffusion length and strong interfacial spin-orbit coupling. However, discrepancies between
Inorganic-organic interfaces are important for enhancing the power conversion efficiency of silicon-based solar cells through singlet exciton fission (SF). We elucidated the structure of the first monolayers of tetracene (Tc), a SF molecule, on hydro
We present results of the analysis of Brillouin Light Scattering (BLS) measurements of spin waves performed on ultrathin single and multirepeat CoFeB layers with adjacent heavy metal layers. From a detailed study of the spin-wave dispersion relation,
Wearable bioelectronics with emphasis on the research and development of advanced person-oriented biomedical devices have attracted immense interest in the last decade. Scientists and clinicians find it essential to utilize skin-worn smart tattoos fo
We have studied the magnetic properties of multilayers composed of ferromagnetic metal Co and heavy metals with strong spin orbit coupling (Pt and Ir). Multilayers with symmetric (ABA stacking) and asymmetric (ABC stacking) structures are grown to st