ترغب بنشر مسار تعليمي؟ اضغط هنا

Principal component analysis of the Spitzer IRS spectra of ultraluminous infrared galaxies

149   0   0.0 ( 0 )
 نشر من قبل Duncan Farrah
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first principal component analysis (PCA) applied to a sample of 119 Spitzer Infrared Spectrograph (IRS) spectra of local ultraluminous infrared galaxies (ULIRGs) at z<0.35. The purpose of this study is to objectively and uniquely characterise the local ULIRG population using all information contained in the observed spectra. We have derived the first three principal components (PCs) from the covariance matrix of our dataset which account for over 90% of the variance. The first PC is characterised by dust temperatures and the geometry of the mix of source and dust. The second PC is a pure star formation component. The third PC represents an anti-correlation between star formation activity and a rising AGN. Using the first three PCs, we are able to accurately reconstruct most of the spectra in our sample. Our work shows that there are several factors that are important in characterising the ULIRG population, dust temperature, geometry, star formation intensity, AGN contribution, etc. We also make comparison between PCA and other diagnostics such as ratio of the 6.2 microns PAH emission feature to the 9.7 micron silicate absorption depth and other observables such as optical spectral type.



قيم البحث

اقرأ أيضاً

171 - H. Inami 2013
We present the data and our analysis of MIR fine-structure emission lines detected in Spitzer/IRS high-res spectra of 202 local LIRGs observed as part of the GOALS project. We detect emission lines of [SIV], [NeII], [NeV], [NeIII], [SIII]18.7, [OIV], [FeII], [SIII]33.5, and [SiII]. Over 75% of our galaxies are classified as starburst (SB) sources in the MIR. We compare ratios of the emission line fluxes to stellar photo- and shock-ionization models to constrain the gas properties in the SB nuclei. Comparing the [SIV]/[NeII] and [NeIII]/[NeII] ratios to the Starburst99-Mappings III models with an instantaneous burst history, the line ratios suggest that the SB in our LIRGs have ages of 1-4.5Myr, metallicities of 1-2Z_sun, and ionization parameters of 2-8e7cm/s. Based on the [SIII]/[SIII] ratios, the electron density in LIRG nuclei has a median electron density of ~300cm-3 for sources above the low density limit. We also find that strong shocks are likely present in 10 SB sources. A significant fraction of the GOALS sources have resolved neon lines and 5 show velocity differences of >200km/s in [NeIII] or [NeV] relative to [NeII]. Furthermore, 6 SB and 5 AGN LIRGs show a trend of increasing line width with ionization potential, suggesting the possibility of a compact energy source and stratified ISM in their nuclei. We confirm a strong correlation between the [NeII]+[NeIII] emission, as well as [SIII]33.5, with both the IR luminosity and the 24um warm dust emission measured from the spectra. Finally, we find no correlation between the hardness of the radiation field or the line width and the ratio of the total IR to 8um emission (IR8). This may be because the IR luminosity and the MIR fine-structure lines are sensitive to different timescales over the SB, or that IR8 is more sensitive to the geometry of the warm dust region than the radiation field producing the HII region emission.
We present low-resolution (64 < R < 124) mid-infrared (8--38 micron) Spitzer/IRS spectra of two z~1.3 ultraluminous infrared galaxies (LFIR~10^13) discovered in a Spitzer/MIPS survey of the Bootes field of the NOAO Deep Wide-Field Survey (NDWFS). MIP S J142824.0+352619 is a bright 160 micron source with a large infrared-to-optical flux density ratio and a possible lensing amplification of <~10. The 6.2, 7.7, 11.3, and 12.8 micron PAH emission bands in its IRS spectrum indicate a redshift of z~1.3. The large equivalent width of the 6.2 micron PAH feature indicates that at least 50% of the mid-infrared energy is generated in a starburst, an interpretation that is supported by a large [NeII]/[NeIII] ratio and a low upper limit on the X-ray luminosity. SST24 J142827.19+354127.71 has the brightest 24 micron flux (10.55 mJy) among optically faint (R > 20) galaxies in the NDWFS. Its mid-infrared spectrum lacks emission features, but the broad 9.7 micron silicate absorption band places this source at z~1.3. Given this redshift, SST24 J142827.19+354127.71 has among the largest rest-frame 5 micron luminosities known. The similarity of its SED to those of known AGN-dominated ULIRGs and its lack of either PAH features or large amounts of cool dust indicate that the powerful mid-infrared emission is dominated by an active nucleus rather than a starburst. Our results illustrate the power of the IRS in identifying massive galaxies in the ``redshift desert and in discerning their power sources. Because they are bright, MIPS J142824.0+352619 (pending future observations to constrain its lensing amplification) and SST24 J142827.19+354127.71 are useful z>1 templates of a high luminosity starburst and AGN, respectively.
120 - F.E. Bauer 2009
We report X-ray constraints for 20 of 52 high-z ULIRGs identified in the Spitzer xFLS to constrain their obscuration. Notably, decomposition of Spitzer-IRS spectra for the 52 objects already indicates that most are weak-PAH ULIRGs dominated by hot-du st continua, characteristic of AGN. Given their redshifts, they have AGN bolometric luminosities of ~1e45-1e47 erg/s comparable to powerful QSOs. This, coupled with their high IR-to-optical ratios and often significant silicate absorption, strongly argues in favor of these mid-IR objects being heavily obscured QSOs. At X-ray energies, we marginally detect two ULIRGs, while the rest have only upper limits. Using the IRS-derived 5.8um AGN continuum luminosity as a proxy for the expected X-ray luminosities, we find that all of the observed sources must individually be highly obscured, while X-ray stacking limits on the undetected sources suggest that the majority, if not all, are likely to be at least mildly Compton-thick (NH>1e24 cm-2). With a space density of ~1.4e-7 Mpc-3 at z~2, such objects imply a lower limit on the obscured AGN fraction (i.e., the ratio of AGN above and below NH=1e22 cm-2) of >~1.7:1 even among luminous QSOs. Our findings, which are based on extensive multi-wavelength constraints including Spitzer IRS spectra, should aid in the interpretation of similar objects from larger or deeper mid-IR surveys, where considerable uncertainty about the source properties remains and comparable follow-up is not yet feasible.
From a Principal Component Analysis (PCA) of 78 z~3 high quality quasar spectra in the SDSS-DR7, we derive the principal components characterizing the QSO continuum over the full wavelength range available. The shape of the mean continuum, is similar to that measured at low-z (z~1), but the equivalent width of the emission lines are larger at low redshift. We calculate the correlation between fluxes at different wavelengths and find that the emission line fluxes in the red part of the spectrum are correlated with that in the blue part. We construct a projection matrix to predict the continuum in the Lyman-$alpha$ forest from the red part of the spectrum. We apply this matrix to quasars in the SDSS-DR7 to derive the evolution with redshift of the mean flux in the Lyman-$alpha$ forest due to the absorption by the intergalactic neutral hydrogen. A change in the evolution of the mean flux is apparent around z~3 in the sense of a steeper decrease of the mean flux at higher redshifts. The same evolution is found when the continuum is estimated from the extrapolation of a power-law continuum fitted in the red part of the quasar spectrum if a correction, derived from simple simulations, is applied. Our findings are consistent with previous determinations using high spectral resolution data. We provide the PCA eigenvectors over the wavelength range 1020-2000 AA and the distribution of their weights that can be used to simulate QSO mock spectra.
Luminous Infrared (IR) Galaxies (LIRGs) are an important cosmological class of galaxies as they are the main contributors to the co-moving star formation rate density of the universe at z=1. In this paper we present a GTO Spitzer IRS program aimed to obtain spectral mapping of a sample of 14 local (d<76Mpc) LIRGs. The data cubes map, at least, the central 20arcsec x 20arcsec to 30arcsec x 30arcsec regions of the galaxies, and use all four IRS modules covering the full 5-38micron spectral range. The final goal of this project is to characterize fully the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts. In this paper we present the first results of this GTO program. The IRS spectral mapping data allow us to build spectral maps of the bright mid-IR emission lines (e.g., [NeII], [NeIII], [SIII], H_2), continuum, the 6.2 and 11.3micron PAH features, and the 9.7micron silicate feature, as well as to extract 1D spectra for regions of interest in each galaxy. The IRS data are used to obtain spatially resolved measurements of the extinction using the 9.7micron silicate feature, and to trace star forming regions using the neon lines and the PAH features. We also investigate a number of AGN indicators, including the presence of high excitation emission lines and a strong dust continuum emission at around 6micron. We finally use the integrated Spitzer/IRS spectra as templates of local LIRGs. We discuss several possible uses for these templates, including the calibration of the star formation rate of IR-bright galaxies at high redshift. We also predict the intensities of the brightest mid-IR emission lines for LIRGs as a function of redshift, and compare them with the expected sensitivities of future space IR missions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا