ﻻ يوجد ملخص باللغة العربية
We present a method for the determination of [alpha/Fe] ratios from low-resolution (R = 2000) SDSS/SEGUE stellar spectra. By means of a star-by-star comparison with degraded spectra from the ELODIE spectral library and with a set of moderately high-resolution (R = 15,000) and medium-resolution (R = 6000) spectra of SDSS/SEGUE stars, we demonstrate that we are able to measure [alpha/Fe] from SDSS/SEGUE spectra (with S/N > 20/1) to a precision of better than 0.1 dex, for stars with atmospheric parameters in the range Teff = [4500, 7000] K, log g = [1.5, 5.0], and [Fe/H] = [-1.4, +0.3], over the range [alpha/Fe] = [-0.1, +0.6]. For stars with [Fe/H] < -1.4, our method requires spectra with slightly higher signal-to-noise to achieve this precision (S/N > 25/1). Over the full temperature range considered, the lowest metallicity star for which a confident estimate of [alpha/Fe] can be obtained from our approach is [Fe/H] ~ -2.5; preliminary tests indicate that a metallicity limit as low as [Fe/H] ~ -3.0 may apply to cooler stars. As a further validation of this approach, weighted averages of [alpha/Fe] obtained for SEGUE spectra of likely member stars of Galactic globular clusters (M15, M13, and M71) and open clusters (NGC 2420, M67, and NGC 6791) exhibit good agreement with the values of [alpha/Fe] from previous studies. The results of the comparison with NGC 6791 imply that the metallicity range for the method may extend to ~ +0.5.
We report high-resolution spectroscopy of 125 field stars previously observed as part of the Sloan Digital Sky Survey and its program for Galactic studies, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These spectra are used
We describe the development and implementation of the SEGUE (Sloan Extension for Galactic Exploration and Understanding) Stellar Parameter Pipeline (SSPP). The SSPP derives, using multiple techniques, radial velocities and the fundamental stellar atm
We validate the performance and accuracy of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and
Encircling the Milky Way at low latitudes, the Low Latitude Stream is a large stellar structure, the origin of which is as yet unknown. As part of the SEGUE survey, several photometric scans have been obtained that cross the Galactic plane, spread ov
We present a method to determine sodium-abundance ratios ([Na/Fe]) using the Na I D doublet lines in low-resolution ($R sim$ 2000) stellar spectra. As stellar Na I D lines are blended with those produced by the interstellar medium (ISM), we developed