ترغب بنشر مسار تعليمي؟ اضغط هنا

The Subaru Ly-alpha blob survey: A sample of 100 kpc Ly-alpha blobs at z=3

112   0   0.0 ( 0 )
 نشر من قبل Yuichi Matsuda
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. Matsuda




اسأل ChatGPT حول البحث

We present results of a survey for giant Ly-alpha nebulae (LABs) at z=3 with Subaru/Suprime-Cam. We obtained Ly-alpha imaging at z=3.09+-0.03 around the SSA22 protocluster and in several blank fields. The total survey area is 2.1 square degrees, corresponding to a comoving volume of 1.6 x 10^6 Mpc^3. Using a uniform detection threshold of 1.4 x 10^{-18} erg s^{-1} cm^{-2} arcsec^{-2} for the Ly-alpha images, we construct a sample of 14 LAB candidates with major-axis diameters larger than 100 kpc, including five previously known blobs and two known quasars. This survey triples the number of known LABs over 100 kpc. The giant LAB sample shows a possible morphology-density relation: filamentary LABs reside in average density environments as derived from compact Ly-alpha emitters, while circular LABs reside in both average density and overdense environments. Although it is hard to examine the formation mechanisms of LABs only from the Ly-alpha morphologies, more filamentary LABs may relate to cold gas accretion from the surrounding inter-galactic medium (IGM) and more circular LABs may relate to large-scale gas outflows, which are driven by intense starbursts and/or by AGN activities. Our survey highlights the potential usefulness of giant LABs to investigate the interactions between galaxies and the surrounding IGM from the field to overdense environments at high-redshift.

قيم البحث

اقرأ أيضاً

In this work we model the observed evolution in comoving number density of Lyman-alpha blobs (LABs) as a function of redshift, and try to find which mechanism of emission is dominant in LAB. Our model calculates LAB emission both from cooling radiati on from the intergalactic gas accreting onto galaxies and from star formation (SF). We have used dark matter (DM) cosmological simulation to which we applied empirical recipes for Ly$alpha$ emission produced by cooling radiation and SF in every halo. In difference to the previous work, the simulated volume in the DM simulation is large enough to produce an average LABs number density. At a range of redshifts $zsim 1-7$ we compare our results with the observed luminosity functions of LABs and LAEs. Our cooling radiation luminosities appeared to be too small to explain LAB luminosities at all redshifts. In contrast, for SF we obtained a good agreement with observed LFs at all redshifts studied. We also discuss uncertainties which could influence the obtained results, and how LAB LFs could be related to each other in fields with different density.
127 - Y. Matsuda 2009
We present the discovery of a candidate of giant radio-quiet Lyman-alpha (Lya) blob (RQLAB) in a large-scale structure around a high-redshift radio galaxy (HzRG) lying in a giant Lya halo, B3 J2330+3927 at redshift z=3.087. We obtained Lya imaging ar ound B3 J2330+3927 with Subaru/Suprime-Cam to search for Lya emitters (LAEs) and absorbers (LAAs) at redshift z=3.09+-0.03. We detected candidate 127 LAEs and 26 LAAs in the field of view of 31 x 24. We found that B3 J2330+3927 is surrounded by a 130 kpc Lya halo and a large-scale (60 x 20 comoving Mpc) filamentary structure. The large-scale structure contains one prominent local density peak with an overdensity of greater than 5, which is 8 (15 comoving Mpc) away from B3 J2330+3927. In this peak, we discovered a candidate 100 kpc RQLAB. The existence of both types of Lya nebulae in the same large-scale structure suggests that giant Lya nebulae need special large-scale environments to form. On smaller scales, however, the location of B3 J2330+3927 is not a significant local density peak in this structure, in contrast to the RQLAB. There are two possible interpretations of the difference of the local environments of these two Lya nebulae. Firstly, RQLAB may need a prominent (delta ~ 5) density peak of galaxies to form through intense star-bursts due to frequent galaxy interactions/mergers and/or continuous gas accretion in an overdense environment. On the other hand, Lya halo around HzRG may not always need a prominent density peak to form if the surrounding Lya halo is mainly powered by its radio and AGN activities. Alternatively, both RQLAB and Lya halo around HzRG may need prominent density peaks to form but we could not completely trace the density of galaxies because we missed evolved and dusty galaxies in this survey.
Using long-slit optical spectroscopy obtained at the 10.4 m Gran Telescopio Canarias, we have examined the gaseous environment of the radio-loud quasar TXS 1436+157 (z=2.54), previously known to be associated with a large Ly-alpha nebula and a spatia lly extended Ly-alpha-absorbing structure. From the Ly-alpha nebula we measure kinematic properties consistent with infall at a rate of about 10-100 M./yr - more than sufficient to power a quasar at the top of the luminosity function. The absorbing structure lies outside of the Ly-alpha nebula, at a radius of >40 kpc from the quasar. Against the bright unresolved continuum and line emission from the quasar, we detect in absorption the NV 1239,1241, CIV 1548,1551 and SiIV 1394,1403 doublets, with no unambiguous detection of absorption lines from any low-ionization species of metal. The metal column densities, taken together with the HI column density measurement from the literature, indicate that the absorbing gas is predominantly ionized by the quasar, has a mass of hydrogen of >1.6 x 10E11 M., a gas density of <18 per cubic cm, a line of sight thickness of >18 pc, and a covering factor approaching unity. While this absorbing structure is clearly not composed of pristine gas, it has an extremely low metallicity, with ionization models providing a 3-sigma limit of 12+log(O/H)<7.3. To explain these results, we discuss a scenario involving starburst-driven super-bubbles and the creation of infalling filaments of cold gas which fuel/trigger the quasar. We also discuss the possibility of detecting large-scale absorbers such as this in emission when illuminated by a powerful quasar.
89 - Pascale Hibon , Francis Tang , 2020
Context. Searching for high-redshift galaxies is a field of intense activity in modern observational cosmology that will continue to grow with future ground-based and sky observatories. Over the last few years, a lot has been learned about the high-z Universe. Aims. Despite extensive Ly-alpha Blobs (LAB) surveys from low to high redshifts, giant LABs over 100 kpc have been found mostly at z~2-4. This redshift range is coincident with the transition epoch of galactic gas-circulation processes from inflows to outflows at z~2.5-3. This suggests that the formation of giant LABs may be related to a combination of gas inflows and outflows. Their extreme youth makes them interesting objects in the study of galaxy formation as they provide insight into some of the youngest known highly star forming galaxies, with only modest time investments using ground-based telescopes. Methods. Systematic narrow-band Ly-alpha nebula surveys are ongoing, but they are limited in their covered redshift range and their comoving volume. This poses a significant problem when searching for such rare sources. To address this problem, we developed a systematic searching tool, ATACAMA (A Tool for seArChing for lArge LyMan Alpha nebulae) designed to find large Ly-alpha nebulae at any redshift within deep multi-wavelength broad-band imaging. Results. We identified a Ly-alpha nebula candidate at zphot~3.3 covering an isophotal area of 29.4sq.arcsec. Its morphology shows a bright core and a faint core which coincides with the morphology of previously known Ly-alpha blobs. A first estimation of the Ly-alpha equivalent width and line flux agree with the values from the study led by several groups.
We report the properties of the 35 robust candidates of Ly-alpha blobs (LABs), which are larger than 16 arcsec^2 in isophotal area and brighter than 0.7 x 10^-16 ergs s^-1 cm^-2, searched in and around the proto-cluster region at redshift z=3.1 disco vered by Steidel et al. in the SSA22 field, based on wide-field (31x23) and deep narrow-band (NB497; 4977/77) and broad-band (B,V, and R) images taken with the prime-focus camera on the Subaru telescope. The two previously known giant LABs are the most luminous and the largest ones in our survey volume of 1.3 x 10^5 Mpc^3. We revealed the internal structures of the two giant LABs and discovered some bubble-like features, which suggest that intensive starburst and galactic superwind phenomena occurred in these objects in the past. The rest 33 LABs have isophotal area of about 16-78 arcsec^2 and flux of 0.7-7 x 10^-16 ergs s^-1 cm^-2. These 35 LABs show a continuous distribution of isophotal area and emission line flux. The distributions of average surface brightness and morphology are widespread from relatively compact high surface brightness objects to very diffuse low surface brightness ones. The physical origins of these LABs may be (i) photo-ionization by massive stars, or active galactic nuclei, or (ii) cooling radiation from gravitationally heated gas, or (iii) shock heating by starburst driven galactic superwind. One third of them are apparently not associated with ultra-violet continuum sources that are bright enough to produce Ly-alpha emission, assuming a Salpeter initial mass function. The 90% of these LABs are located inside the high surface density region of the 283 relatively compact and strong Ly-alpha emitters selected in our previous study. This suggests that these LABs may be the phenomena related to dense environment at high redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا