ترغب بنشر مسار تعليمي؟ اضغط هنا

Response of a TeO_2 bolometer to alpha particles

245   0   0.0 ( 0 )
 نشر من قبل Fabio Bellini
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

$TeO_2$ crystals are used as bolometers in experiments searching for Double Beta Decay without emission of neutrinos. One of the most important issues in this extremely delicate kind of experiments is the characterization of the background. The knowledge of the response to $alpha$ particles in the energy range where the signal is expected is therefore a must. In this paper we report the results on the response function of a $TeO_2$ bolometer to $alpha$s emitted by $^{147}$Sm dissolved in the crystal at the growth phase. A Quenching Factor of ($1.0076pm 0.0005$) is found, independent of the temperature in the investigated range. The energy resolution on $alpha$ peaks shows a standard calorimeter energy dependence: $sigma; [rm{keV}] = (0.56 pm 0.02) oplus (0.010 pm 0.002)sqrt{E[rm{keV}]} $. Signal pulses show no difference between $alpha$ and $betagamma$ particles

قيم البحث

اقرأ أيضاً

High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose , we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.
The response of a position-sensitive Li-glass scintillator detector to $alpha$-particles from a collimated $^{241}$Am source scanned across the face of the detector has been measured. Scintillation light was read out by an 8 X 8 pixel multi-anode pho tomultiplier and the signal amplitude for each pixel has been recorded for every position on a scan. The pixel signal is strongly dependent on position and in general several pixels will register a signal (a hit) above a given threshold. The effect of this threshold on hit multiplicity is studied, with a view to optimize the single-hit efficiency of the detector.
In this Letter, we report on alpha particle emission through the nuclear break-up in the reaction 40Ca on a 40Ca target at 50A MeV. It is observed that, similarly to nucleons, alpha particles can be emitted to the continuum with very specific angular distribution during the reaction. The alpha particle properties can be understood as resulting from an alpha cluster in the daughter nucleus that is perturbed by the short range nuclear attraction of the collision partner and emitted. A time-dependent theory that describe the alpha particle wave-function evolution is able to reproduce qualitatively the observed angular distribution. This mechanism offers new possibilities to study alpha particle properties in the nuclear medium.
We investigate the performances of two ZnMoO4 scintillating crystals operated as bolometers, in view of a next generation experiment to search the neutrinoless double beta decay of Mo-100. We present the results of the alpha vs beta/gamma discriminat ion, obtained through the scintillation light as well as through the study of the shape of the thermal signal alone. The discrimination capability obtained at the 2615 keV line of Tl-208 is 8 sigma, using the heat-light scatter plot, while it exceeds 20 sigma using the shape of the thermal pulse alone. The achieved FWHM energy resolution ranges from 2.4 keV (at 238 keV) to 5.7 keV (at 2615 keV). The internal radioactive contaminations of the ZnMoO4 crystals were evaluated through a 407 hours background measurement. The obtained limit is < 32 microBq/kg for Th-228 and Ra-226. These values were used for a Monte Carlo simulation aimed at evaluating the achievable background level of a possible, future array of enriched ZnMoO4 crystals.
Zinc molybdate (ZnMoO4) single crystals were grown for the first time by the Czochralski method and their luminescence was measured under X ray excitation in the temperature range 85-400 K. Properties of ZnMoO4 crystal as cryogenic low temperature sc intillator were checked for the first time. Radioactive contamination of the ZnMoO4 crystal was estimated as <0.3 mBq/kg (228-Th) and 8 mBq/kg (226-Ra). Thanks to the simultaneous measurement of the scintillation light and the phonon signal, the alpha particles can be discriminated from the gamma/beta interactions, making this compound extremely promising for the search of neutrinoless Double Beta Decay of 100-Mo. We also report on the ability to discriminate the alpha-induced background without the light measurement, thanks to a different shape of the thermal signal that characterizes gamma/beta and alpha particle interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا