ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of fragment yield ratios in the nuclear phase transition

81   0   0.0 ( 0 )
 نشر من قبل Rahul Tripathi
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The critical phenomena of the liquid-gas phase transition has been investigated in the reactions 78,86Kr+58,64Ni at beam energy of 35 MeV/nucleon using the Landau free energy approach with isospin asymmetry as an order parameter. Fits to the free energy of fragments showed three minima suggesting the system to be in the regime of a first order phase transition. The relation m =-{partial}F/{partial}H, which defines the order parameter and its conjugate field H, has been experimentally verified from the linear dependence of the mirror nuclei yield ratio data, on the isospin asymmetry of the source. The slope parameter, which is a measure of the distance from a critical temperature, showed a systematic decrease with increasing excitation energy of the source. Within the framework of the Landau free energy approach, isoscaling provided similar results as obtained from the analysis of mirror nuclei yield ratio data. We show that the external field is primarily related to the minimum of the free energy, which implies a modification of the source concentration Delta used in isospin studies.

قيم البحث

اقرأ أيضاً

268 - Bernard Borderie 2010
The role played by the heaviest fragment in partitions of multifragmenting hot nuclei is emphasized. Its size/charge distribution (mean value, fluctuations and shape) gives information on properties of fragmenting nuclei and on the associated phase transition.
For the first time primary hot isotope distributions are experimentally reconstructed in intermediate heavy ion collisions and used with antisymmetrized molecular dynamics (AMD) calculations to determine density, temperature and symmetry energy coeff icient in a self-consistent manner. A kinematical focusing method is employed to reconstruct the primary hot fragment yield distributions for multifragmentation events observed in the reaction system $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon. The reconstructed yield distributions are in good agreement with the primary isotope distributions of AMD simulations. The experimentally extracted values of the symmetry energy coefficient relative to the temperature, $a_{sym}/T$, are compared with those of the AMD simulations with different density dependence of the symmetry energy term. The calculated $a_{sym}/T$ values changes according to the different interactions. By comparison of the experimental values of $a_{sym}/T$ with those of calculations, the density of the source at fragment formation was determined to be $rho /rho_{0} = (0.63 pm 0.03 )$. Using this density, the symmetry energy coefficient and the temperature are determined in a self-consistent manner as $a_{sym} = (24.7 pm 1.9) MeV$ and $T=(4.9 pm 0.2)$ MeV
268 - A. Bonasera , Z. Chen , R. Wada 2008
In their ground states, atomic nuclei are quantum Fermi liquids. At finite temperatures and low densities, these nuclei may undergo a phase change similar to, but substantially different from, a classical liquid gas phase transition. As in the classi cal case, temperature is the control parameter while density and pressure are the conjugate variables. At variance with the classical case, in the nucleus the difference between the proton and neutron concentrations acts as an additional order parameter, for which the symmetry potential is the conjugate variable. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is analogous to the phase transitions occurring in $^{4}$He-$^{3}$He liquid mixtures. We present experimental results which reveal the N/Z dependence of the phase transition and discuss possible implications of these observations in terms of the Landau Free Energy description of critical phenomena.
66 - E. Kokoulina 2015
First results of study of a soft photon yield at Nuclotron (LHEP, JINR) in nucleus-nucleus collisions at 3.5 GeV per nucleon are presented. These photons are registered by an BGO electromagnetic calorimeter built by SVD-2 Collaboration. The obtained spectra confirm the excessive yield in the energy region less than 50 MeV in comparison with theoretical estimations and agree with previous experiments at high-energy interactions.
Isomeric yield ratios for the odd-$A$ isotopes of $^{119-127}$Cd and $^{119-127}$In from 25-MeV proton-induced fission on natural uranium have been measured at the JYFLTRAP double Penning trap, by employing the Phase-Imaging Ion-Cyclotron-Resonance t echnique. With the significantly improved mass resolution of this novel method isomeric states separated by 140 keV from the ground state, and with half-lives of the order of 500 ms, could be resolved. This opens the door for obtaining new information on low-lying isomers, of importance for nuclear structure, fission and astrophysics. In the present work the experimental isomeric yield ratios are used for the estimation of the root-mean-square angular momentum ($J_mathrm{rms}$) of the primary fragments. The results show a dependency on the number of unpaired protons and neutrons, where the odd-$Z$ In isotopes carry larger angular momenta. The deduced values of $J_mathrm{rms}$ display a linear relationship when compared with the electric quadrupole moments of the fission products.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا