ﻻ يوجد ملخص باللغة العربية
Collinear and canted magnetic motifs in haematite were investigated by Kokubun et al. (2008) using x-ray Bragg diffraction magnified at the iron K-edge, and analyses of observations led to various potentially interesting conclusions. We demonstrate that the reported analyses for both non-resonant and resonant magnetic diffraction at low energies near the absorption K-edge are not appropriate. In its place, we apply a radically different formulation, thoroughly tried and tested, that incorporates all magnetic contributions to resonant x-ray diffraction allowed by the established chemical and magnetic structures. Essential to a correct formulation of diffraction by a magnetic crystal with resonant ions at sites that are not centres of inversion symmetry are parity-odd atomic multipoles, time-even (polar) and time-odd (magneto-electric), that arise from enhancement by the electric-dipole (E1) - electric-quadrupole (E2) event. Analyses of azimuthal-angle scans on two space-group forbidden reflections, hexagonal (0, 0, 3)h and (0, 0, 9)h, collected by Kokubun et al. above and below the Morin temperature (TM = 250K), allow us to obtain good estimates of contributing polar and magneto-electric multipoles, including the iron anapole. We show, beyond reasonable doubt, that available data are inconsistent with parity-even events only (E1-E1 and E2- E2). For future experiments, we show that chiral states of haematite couple to circular polarization and differentiate E1-E2 and E2-E2 events, while the collinear motif supports magnetic charges.
We compare the statistics of parity even and odd multipoles of the cosmic microwave background (CMB) sky from PLANCK full mission temperature measurements. An excess power in odd multipoles compared to even multipoles has previously been found on lar
Violation of parity symmetry gives rise to various physical phenomena such as nonlinear transport and cross-correlated responses. In particular, the nonlinear conductivity has been attracting a lot of attentions in spin-orbit coupled semiconductors,
Up to now, for the conventional exchange bias (EB) systems there has been one pinning phase and one pinned phase, and the pinning and pinned phases are inherent to the material and do not mutually transform into each other. Interestingly, we show her
In chiral magnetic materials, numerous intriguing phenomena such as built in chiral magnetic domain walls (DWs) and skyrmions are generated by the Dzyaloshinskii Moriya interaction (DMI). The DMI also results in asymmetric DW speed under in plane mag
The crystal and magnetic structures of the orthorhombic e-Fe2O3 have been studied by simultaneous Rietveld refinement of X-ray and neutron powder diffraction data in combination with Mossbauer spectroscopy, as well as magnetisation and heat capacity