ترغب بنشر مسار تعليمي؟ اضغط هنا

Far-Field Microscopy of Sparse Subwavelength Objects

138   0   0.0 ( 0 )
 نشر من قبل Alexander Szameit
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the experimental reconstruction of sub-wavelength features from the far-field of sparse optical objects. We show that it is sufficient to know that the object is sparse, and only that, and recover 100 nm features with the resolution of 30 nm, for an illuminating wavelength of lambda=532 nm. Our technique works in real-time, requires no scanning, and can be implemented in all existing microscopes - optical and non-optical.



قيم البحث

اقرأ أيضاً

146 - T. Pu , V. Savinov , G. Yuan 2019
Recently it was reported that deeply subwavelength features of free space superoscillatory electromagnetic fields can be observed experimentally and used in optical metrology with nanoscale resolution [Science 364, 771 (2019)]. Here we introduce a ne w type of imaging, termed Deeply Subwavelength Superoscillatory Imaging (DSSI), that reveals the fine structure of a physical object through its far-field scattering pattern under superoscillatory illumination. The object is reconstructed from intensity profiles of scattered light recorded for different positions of the object in the superoscillatory field. The reconstruction is performed with a convolutional neural network trained on a large number of scattering events. We show that DSSI offers resolution far beyond the conventional diffraction limit. In modelling experiments, a dimer comprising two subwavelength opaque particles is imaged with a resolution exceeding ${lambda}/200$.
Imaging below the diffraction limit is always a public interest because of the restricted resolution of conventional imaging systems. To beat the limit, evanescent harmonics decaying in space must participate in the imaging process. Here, we introduc e the method of spatial spectrum sampling, a novel far-field superresolution imaging method for microwave and terahertz regime. Strong dispersion and momentum conservation allow the spoof surface plasmon polaritons (SSP) structure to become a sensitive probe for spatial harmonics. This enables that the spatial information of the targets including both propagating and evanescent components, can be extracted by tuning and recording SSP in the far field. Then, the subwavelength resolution is constructed by the inversed Fourier transform of the sampled spatial spectrum. Using the modified subwavelength metallic grating as the spoof plasmonic structure, a far-field resolution of 0.17 wavelength is numerically and experimentally verified, and two-dimensional imaging ability is also fully discussed. The imaging ability and flexibility can be further optimizing the SSP structures. We are confident that our working mechanism will have great potentials in the superresolution imaging applications in the microwave and terahertz frequency range
This work focuses on the generation of far-field super-resolved pure-azimuthal focal field based on the fast Fourier transform. A self-designed differential filter is first pioneered to robustly reconfigure a doughnut-shaped azimuthal focal field int o a bright one with a sub-wavelength lateral scale (0.392{lambda}), which offers a 27.3% reduction ratio relative to that of tightly focused azimuthal polarization modulated by a spiral phase plate. By further uniting the versatile differential filter with spatially shifted beam approach, in addition to allowing for an extremely sharper focal spot, whose size is in turn reduced to 0.228{lambda} and 0.286{lambda} in the transverse as well as axial directions, the parasitic sidelobes are also lowered to an inessential level (< 20%), thereby enabling an excellent three-dimensional deep-subwavelength focal field ({lambda}3/128). The relevant phase profiles are further exhibited to unravel the annihilation of field singularity and locally linear (i.e. azimuthal) polarization. Our scheme opens a promising route toward efficiently steer and tailor the redistribution of the focal field.
Transmission spectra of metallic films or membranes perforated by arrays of subwavelength slits or holes have been widely interpreted as resonance absorption by surface plasmon polaritons (SPPs). Alternative interpretations involving evanescent waves diffracted on the surface have also been proposed. These two approaches lead to divergent predictions for some surface wave properties. Using far-field interferometry, we have carried out a series of measurements on elementary one-dimensional (1-D) subwavelength structures with the aim of testing key properties of the surface waves and comparing them to predictions of these two points of view.
Terahertz subwavelength imaging aims at developing THz microscopes able to resolve deeply subwavelength features. To improve the spatial resolution beyond the diffraction limit, a current trend is to use various subwavelength probes to convert the ne ar-field to the far-field. These techniques, while offering significant gains in spatial resolution, inherently lack the ability to rapidly obtain THz images due to the necessity of slow pixel-by-pixel raster scan and often suffer from low light throughput. In parallel, in the visible spectral range, several super-resolution imaging techniques were developed that enhance the image resolution by recording and statistically correlating multiple images of an object backlit with light from stochastically blinking fluorophores. Inspired by this methodology, we develop a Super-resolution Orthogonal Deterministic Imaging (SODI) technique and apply it in the THz range. Since there are no natural THz fluorophores, we use optimally designed mask sets brought in proximity with the object as artificial fluorophores. Because we directly control the form of the masks, rather than relying on statistical averages, we aim at employing the smallest possible number of frames. After developing the theoretical basis of SODI, we demonstrate the second-order resolution improvement experimentally using phase masks and binary amplitude masks with only 8 frames. We then numerically show how to extend the SODI technique to higher orders to further improve the resolution. As our formulation is based on the equation of linear imaging and it uses spatial modulation of either the phase or the amplitude of the THz wave, our methodology can be readily adapted for the use with existing phase-sensitive single pixel imaging systems or any amplitude sensitive THz imaging arrays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا