ﻻ يوجد ملخص باللغة العربية
We present the experimental reconstruction of sub-wavelength features from the far-field of sparse optical objects. We show that it is sufficient to know that the object is sparse, and only that, and recover 100 nm features with the resolution of 30 nm, for an illuminating wavelength of lambda=532 nm. Our technique works in real-time, requires no scanning, and can be implemented in all existing microscopes - optical and non-optical.
Recently it was reported that deeply subwavelength features of free space superoscillatory electromagnetic fields can be observed experimentally and used in optical metrology with nanoscale resolution [Science 364, 771 (2019)]. Here we introduce a ne
Imaging below the diffraction limit is always a public interest because of the restricted resolution of conventional imaging systems. To beat the limit, evanescent harmonics decaying in space must participate in the imaging process. Here, we introduc
This work focuses on the generation of far-field super-resolved pure-azimuthal focal field based on the fast Fourier transform. A self-designed differential filter is first pioneered to robustly reconfigure a doughnut-shaped azimuthal focal field int
Transmission spectra of metallic films or membranes perforated by arrays of subwavelength slits or holes have been widely interpreted as resonance absorption by surface plasmon polaritons (SPPs). Alternative interpretations involving evanescent waves
Terahertz subwavelength imaging aims at developing THz microscopes able to resolve deeply subwavelength features. To improve the spatial resolution beyond the diffraction limit, a current trend is to use various subwavelength probes to convert the ne