ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissipative processes in superfluid quark matter

194   0   0.0 ( 0 )
 نشر من قبل Massimo Mannarelli
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present some results about dissipative processes in fermionic superfluids that are relevant for compact stars. At sufficiently low temperatures the transport properties of a superfluid are dominated by phonons. We report the values of the bulk viscosity, shear viscosity and thermal conductivity of phonons in quark matter at extremely high density and low temperature. Then, we present a new dissipative mechanism that can operate in compact stars and that is named rocket term. The effect of this dissipative mechanism on superfluid r-mode oscillations is sketched.



قيم البحث

اقرأ أيضاً

We study neutrino emission from direct Urca processes in pion condensed quark matter. In compact stars with high baryon density, the emission is dominated by the gapless modes of the pion condensation which leads to an enhanced emissivity. While for massless quarks the enhancement is not remarkable, the emissivity is significantly larger and the cooling of the condensed matter is considerably faster than that in normal quark matter when the mass difference between $u$- and $d$-quarks is sizable.
364 - Kei Iida UIUC 2000
We apply Ginzburg-Landau theory to determine BCS pairing in a strongly-coupled uniform superfluid of three-flavor massless quarks in flavor equilibrium. We elucidate the phase diagram near the critical temperature in the space of the parameters chara cterizing the thermodynamic potential terms of fourth order in the pairing gap. Within the color and flavor antisymmetric channel with zero total angular momentum, the phase diagram contains an isoscalar (IS) color-antitriplet phase and a color-flavor-locked (CFL) phase, reached by a second order transition from the normal state, as well as states reached by a first order transition. We complement the general Ginzburg-Landau approach by deriving the high-density asymptotic form of the Ginzburg-Landau free energy from the weak-coupling gap equation. The dynamically-screened, long-range color magnetic interactions are taken into account in solving the gap equation. We find that in the limit of weak coupling, the IS phase is less favorable near the transition temperature than the CFL phase. In view of the fact that deconfined quark matter must be color charge neutral, we incorporate the constraint of overall color neutrality into the Ginzburg-Landau theory and the gap equation. This constraint yields a disparity in the chemical potential between colors and reduces the size of the gap, in the presence of the anisotropy of the order parameters in color space. In comparison with the case in which there are no chemical potential differences between colors and hence the superfluid generally has nonzero net color charge, we find that while the constraint of color neutrality has only negligible effects on the gap in the weak coupling regime, it appreciably destabilizes the IS phase in the strong coupling regime without affecting the CFL phase.
Charged asymptotically AdS black branes in five dimensions are sometimes unstable to the condensation of charged scalar fields. For fields of infinite charge and squared mass -4 Herzog was able to analytically determine the phase transition temperatu re and compute the endpoint of this instability in the neighborhood of the phase transition. We generalize Herzogs construction by perturbing away from infinite charge in an expansion in inverse charge and use the solutions so obtained as input for the fluid gravity map. Our tube wise construction of patched up locally hairy black brane solutions yields a one to one map from the space of solutions of superfluid dynamics to the long wavelength solutions of the Einstein Maxwell system. We obtain explicit expressions for the metric, gauge field and scalar field dual to an arbitrary superfluid flow at first order in the derivative expansion. Our construction allows us to read off the the leading dissipative corrections to the perfect superfluid stress tensor, current and Josephson equations. A general framework for dissipative superfluid dynamics was worked out by Landau and Lifshitz for zero superfluid velocity and generalized to nonzero fluid velocity by Clark and Putterman. Our gravitational results do not fit into the 13 parameter Clark-Putterman framework. Purely within fluid dynamics we present a consistent new generalization of Clark and Puttermans equations to a set of superfluid equations parameterized by 14 dissipative parameters. The results of our gravitational calculation fit perfectly into this enlarged framework. In particular we compute all the dissipative constants for the gravitational superfluid.
The spectrum of emitted gluons from the process $mathrm{ggrightarrow ggg}$ has been evaluated by relaxing some of the approximations used in earlier works. The formula obtained in the present work has been applied to several physical quantities. A ge neral expression for the dead cone of gluons radiated by virtual partons has been derived. It is observed that the suppression caused by the high virtuality is overwhelmingly large as compared to that on account of conventional dead-cone of heavy quarks.
The dissipative corrections to the hydrodynamic equations describing the evolution of energy-momentum tensor and parton densities are derived in a simple way using the scaling approximation for the expanding quark gluon plasma at finite baryon densit y. This procedure has been extended to study the process of chemical equilibration using a set of rate equations appropriate for a viscous quark gluon plasma. It is found that in the presence of dissipation, the temperature of the plasma evolves slower, whereas the quark and gluon fugacities evolve faster than their counterparts in the ideal case without viscosity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا