ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral dependence of photoinduced spin precession in DyFeO3

150   0   0.0 ( 0 )
 نشر من قبل Ryugo Iida
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin precession was nonthermally induced by an ultrashort laser pulse in orthoferrite DyFeO3 with a pump-probe technique. Both circularly and linearly polarized pulses led to spin precessions; these phenomena are interpreted as the inverse Faraday effect and the inverse Cotton-Mouton effect, respectively. For both cases, the same mode of spin precession was excited; the precession frequencies and polarization were the same, but the phases of oscillations were different. We have shown theoretically and experimentally that the analysis of phases can distinguish between these two mechanisms. We have demonstrated experimentally that in the visible region, the inverse Faraday effect was dominant, whereas the inverse Cotton-Mouton effect became relatively prominent in the near-infrared region.

قيم البحث

اقرأ أيضاً

We have investigated crystal field and phonon dynamics of the multiferroic orthoferrite DyFeO$_3$ via polarized infrared spectroscopy. Reflectance of single crystals was measured in the far- to mid-infrared spectral range at range of temperatures fro m 10-295 K. We observe a strongly anisotropic phonon spectrum which differs from earlier lattice dynamical calculations in its symmetry, as well as a mode with significant and unusual temperature dependence that we interpret as a coupled phonon-crystal-field excitation.
We report a combined neutron scattering and magnetization study on the multiferroic DyFeO3 which shows a very strong magnetoelectric effect. Applying magnetic field along the c-axis, the weak ferromagnetic order of the Fe ions is quickly recovered fr om a spin reorientation transition, and the long-range antiferromagnetic order of Dy becomes a short-range one. We found that the short-range order concurs with the multiferroic phase and is responsible for its sizable hysteresis. Our H-T phase diagram suggests that the strong magnetoelectric effect in DyFeO3 has to be understood with not only the weak ferromagnetism of Fe but also the short-range antiferromagnetic order of Dy.
The polarization dependence of magnetic excitations in the quasi one-dimensional antiferromagnet BaCu2Si2O7 is studied as a function of momentum and energy transfer. The results of inelastic neutron scattering measurements are directly compared to se mi-analytical calculations based on the chain-Mean Field and Random Phase approximations. A quantitative agreement between theoretically calculated and experimentally measured dynamic structure factors of transverse spin fluctuations is obtained. In contrast, substantial discrepancies are found for longitudinal polarization. This behavior is attributed to intrinsic limitations of the RPA that ignores correlation effects.
Novel phases of matter with unique properties that emerge from quantum and topological protection present an important thrust of modern research. Of particular interest is to engineer these phases on demand using ultrafast external stimuli, such as p hotoexcitation, which offers prospects of their integration into future devices compatible with optical communication and information technology. Here, we use MeV Ultrafast Electron Diffraction (UED) to show how a transient three-dimensional (3D) Dirac semimetal state can be induced by a femtosecond laser pulse in a topological insulator ZrTe$_5$. We observe marked changes in Bragg diffraction, which are characteristic of bond distortions in the photoinduced state. Using the atomic positions refined from the UED, we perform density functional theory (DFT) analysis of the electronic band structure. Our results reveal that the equilibrium state of ZrTe$_5$ is a topological insulator with a small band gap of $sim$25 meV, consistent with angle-resolved photoemission (ARPES) experiments. However, the gap is closed in the presence of strong spin-orbit coupling (SOC) in the photoinduced transient state, where massless Dirac fermions emerge in the chiral band structure. The time scale of the relaxation dynamics to the transient Dirac semimetal state is remarkably long, $tau sim$160 ps, which is two orders of magnitude longer than the conventional phonon-driven structural relaxation. The long relaxation is consistent with the vanishing density of states in Dirac spectrum and slow spin-repolarization of the SOC-controlled band structure accompanying the emergence of Dirac fermions.
131 - Kenji Yonemitsu 2005
Theories of photoinduced phase transitions have developed along with the progress in experimental studies, especially concerning their nonlinear characters and transition dynamics. At an early stage, paths from photoinduced local structural distortio ns to global ones are explained in classical statistical models. Their dynamics are governed by transition probabilities and inevitably stochastic, but they were sufficient to describe coarse-grained time evolutions. Recently, however, a variety of dynamics including ultrafast ones are observed in different electronic states. They are explained in relevant electronic models. In particular, a coherent lattice oscillation and coherent motion of a macroscopic domain boundary need appropriate interactions among electrons and lattice displacements. Furthermore, some transitions proceed almost in one direction, which can be explained by considering relevant electronic processes. We describe the history of theories of photoinduced phase transitions and discuss a future perspective.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا