ﻻ يوجد ملخص باللغة العربية
A correlated quantum many-body method is applied to describe resonance states of atomic Bose-Einstein condensates (BEC) in a realistic shallow trap (as opposed to infinite traps commonly used). The realistic van der Waals interaction is adopted as the interatomic interaction. We calculate experimentally measurable decay rates of the lowest quasi-bound state in the shallow trap. The most striking result is the observation of a new metastable branch besides the usual one for attractive BEC in a pure harmonic trap. As the particle number increases the new metastable branch appears, then gradually disappears and finally usual metastable branch (associated with the attractive BEC in a harmonic trap) appears, eventually leading to the collapse of the condensate.
Tunneling of a quasibound state is a non-smooth process in the entangled many-body case. Using time-evolving block decimation, we show that repulsive (attractive) interactions speed up (slow down) tunneling, which occurs in bursts. While the escape t
Rapidly scanning magnetic and optical dipole traps have been widely utilised to form time-averaged potentials for ultracold quantum gas experiments. Here we theoretically and experimentally characterise the dynamic properties of Bose-Einstein condens
We revisit in detail the non-mean-field ground-state phase diagram for a binary mixture of spin-1 Bose-Einstein condensates including quantum fluctuations. The non-commuting terms in the spin-dependent Hamiltonian under single spatial mode approximat
We study the stability of persistent currents in a coherently coupled quasi-2D Bose-Einstein condensate confined in a ring trap at T=0. By numerically solving Gross-Pitaevskii equations and by analyzing the excitation spectrum obtained from diagonali
The time it takes a quantum system to complete a tunneling event (which in the case of cross-barrier tunneling can be viewed as the time spent in a classically forbidden area) is related to the time required for a state to evolve to an orthogonal sta