ترغب بنشر مسار تعليمي؟ اضغط هنا

Obscured Starburst Activity in High Redshift Clusters and Groups

178   0   0.0 ( 0 )
 نشر من قبل Dale D. Kocevski
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using Spitzer-MIPS 24um imaging and Keck spectroscopy we examine the nature of the obscured star forming population in three clusters and three groups at z~0.9. These six systems are components of the Cl1604 supercluster, the largest structure imaged by Spitzer at redshifts near unity. We find that the average density of 24um-detected galaxies within the Cl1604 clusters is nearly twice that of the surrounding field and that this overdensity scales with the clusters dynamical state. The 24um-bright members often appear optically unremarkable and exhibit only moderate [OII] line emission due to severe obscuration. Their spatial distribution suggests they are an infalling population, but an examination of their spectral properties, morphologies and optical colors indicate they are not simply analogs of the field population that have yet to be quenched. Using stacked composite spectra, we find the 24um-detected cluster and group galaxies exhibit elevated levels of Balmer absorption compared to galaxies undergoing normal, continuous star formation. A similar excess is not observed in field galaxies with equivalent infrared luminosities, indicating a greater fraction of the detected cluster and group members have experienced a burst of star formation in the recent past compared to their counterparts in the field. Our results suggest that gas-rich galaxies at high redshift experience a temporary increase in their star formation activity as they assemble into denser environments. Using HST-ACS imaging we find that disturbed morphologies are common among the 24um-detected cluster and group members and become more prevalent in regions of higher galaxy density. We conclude that mergers are the dominant triggering mechanism responsible for the enhanced star formation found in the Cl1604 groups, while a mix of harassment and mergers are likely driving the activity of the cluster galaxies.



قيم البحث

اقرأ أيضاً

We present the first results from a near-IR spectroscopic campaign of the Cl1604 supercluster at z~0.9 and the cluster RX J1821.6+6827 at z~0.82 to investigate the nature of [OII] 3727A emission in cluster galaxies at high redshift. Of the 401 member s in the two systems, 131 galaxies have detectable [OII] emission with no other signs of current star-formation, as well as strong absorption features indicative of a well-established older stellar population. The combination of these features suggests that the primary source of [OII] emission in these galaxies is not the result of star-formation, but rather due to the presence of a LINER or Seyfert component. Using the NIRSPEC spectrograph on the Keck II 10-m telescope, 19 such galaxies were targeted, as well as six additional [OII]-emitting cluster members that exhibited other signs of ongoing star-formation. Nearly half (~47%) of the 19 [OII]-emitting, absorption-line dominated galaxies exhibit [OII] to Ha equivalent width ratios higher than unity, the typical value for star-forming galaxies. A majority (~68%) of these 19 galaxies are classified as LINER/Seyfert based on the emission-line ratio of [NII] and Ha, increasing to ~85% for red [OII]-emitting, absorption-line dominated galaxies. The LINER/Seyfert galaxies exhibit L([OII])/L(Ha) ratios significantly higher than that observed in populations of star-forming galaxies, suggesting that [OII] is a poor indicator of star-formation in a large fraction of high-redshift cluster members. We estimate that at least ~20% of galaxies in high-redshift clusters contain a LINER/Seyfert component that can be revealed with line ratios. We also investigate the effect this population has on the star formation rate of cluster galaxies and the post-starburst fraction, concluding that LINER/Seyferts must be accounted for if these quantities are to be meaningful.
133 - Desika Narayanan 2013
I present a model for the star formation properties of z~2 starburst galaxies. Here, I discuss models for the formation of high-z Submillimeter Galaxies, as well as the CO-H2 conversion factor for these systems. I then apply these models to literatur e observations. I show that when using a functional form for XCO that varies smoothly with the physical properties in galaxies, galaxies at both local and high-z lie on a unimodal Kennicutt-Schmidt star formation law, with power-law index of ~2. The inferred gas fractions of these galaxies are large (fgas ~ 0.2-0.4), though a factor ~2 lower than most literature estimates that utilize locally-calibrated CO-H2 conversion factors.
Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts - that is, increased rates of star formation - in the most massive dark matter halos at early epochs. However, it remains unknown how soon after the Big Bang such massive starburst progenitors exist. The measured redshift distribution of dusty, massive starbursts has long been suspected to be biased low in redshift owing to selection effects, as confirmed by recent findings of systems out to redshift z~5. Here we report the identification of a massive starburst galaxy at redshift 6.34 through a submillimeter color-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40% of the baryonic mass. A maximum starburst converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn of cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this pu rpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 < z < 1 are selected from the COSMOS 2 deg^2 survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside R_500. The total sample of 118 groups and clusters with z < 1 spans a range in M_500 of ~10^13--10^15 M_sun. We find that the stellar mass fraction associated with galaxies at R_500 decreases with increasing total mass as (M_500)^-0.37 pm 0.04, independent of redshift. Estimating the total gas mass fraction from a recently derived, high quality scaling relation, the total baryon mass fraction (f_500^stars+gas=f_500^stars+f_500^gas) is found to increase by ~ 25% when M_500 increases from <M>=5 X 10^13 M_sun to <M> = 7 X 10^14 M_sun. After consideration of a plausible contribution due to intra--cluster light (11--22% of the total stellar mass), and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3sigma for groups of <M>=5 X 10^13~M_sun. The discrepancy decreases towards higher total masses, such that it is 1sigma at <M>= 7 X 10^14~M_sun. We discuss this result in terms of non--gravitational processes such as feedback and filamentary heating.
Quasar-driven outflows must have made their most significant impact on galaxy formation during the epoch when massive galaxies were forming most rapidly. To study the impact of quasar feedback we conducted rest-frame optical integral field spectrogra ph (IFS) observations of three extremely red quasars (ERQs) and one type-2 quasar at $z=2-3$, obtained with the NIFS and OSIRIS instruments at the Gemini North and W. M. Keck Observatory with the assistance of laser-guided adaptive optics. We use the kinematics and morphologies of the [OIII] 5007AA and H$alpha$ 6563AA emission lines redshifted into the near-infrared to gauge the extents, kinetic energies and momentum fluxes of the ionized outflows in the quasars host galaxies. For the ERQs, the galactic-scale outflows are likely driven by radiation pressure in a high column density environment or due to an adiabatic shock. For the type-2 quasar, the outflow is driven by radiation pressure in a low column density environment or due to a radiative shock. The outflows in the ERQs carry a significant amount of energy ranging from 0.05-5$%$ of the quasars bolometric luminosity, powerful enough to have a significant impact on the quasar host galaxies. However, the outflows are likely only impacting the inner few kpc of each host galaxy. The observed outflow sizes are generally smaller than other ionized outflows observed at high redshift. The high ratio between the momentum flux of the ionized outflow and the photon momentum flux from the quasar accretion disk and high nuclear obscuration makes these ERQs great candidates for transitional objects where the outflows are likely responsible for clearing material in the inner regions of each galaxy, unveiling the quasar accretion disk at optical wavelengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا