ﻻ يوجد ملخص باللغة العربية
It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [L. Lydersen et al., Nat. Photonics DOI:10.1038/nphoton.2010.214]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.
This is a reply to the comment by Yuan et al. [arXiv:1009.6130v1] on our publication [arXiv:1008.4593].
We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear threshold detectors in quantum key
Several attacks have been proposed on quantum key distribution systems with gated single-photon detectors. The attacks involve triggering the detectors outside the center of the detector gate, and/or using bright illumination to exploit classical pho
This is a comment on the publication by Yuan et al. [Appl. Phys. Lett. 98, 231104 (2011); arXiv:1106.2675v1 [quant-ph]].
This is a chapter on quantum cryptography for the book A Multidisciplinary Introduction to Information Security to be published by CRC Press in 2011/2012. The chapter aims to introduce the topic to undergraduate-level and continuing-education student