ﻻ يوجد ملخص باللغة العربية
A single atom in free space can have a strong influence on a light beam and a single photon can have a strong effect on a single atom in free space. Regarding this interaction, two conceptually different questions can be asked: can a single atom fully absorb a single photon and can a single atom fully reflect a light beam. The conditions for achieving the full effect in either case are different. Here we discuss related questions in the context of an optical resonator. When shaping a laser pulse properly it will be fully absorbed by an optical resonator, i.e., no light will be reflected and all the pulse energy will accumulate inside the resonator before it starts leaking out. We show in detail that in this case the temporal pulse shape has to match the time-reversed pulse obtained by the cavitys free decay. On the other hand a resonator, made of highly reflecting mirrors which normally reflect a large portion of any incident light, may fully transmit the light, as long as the light is narrow band and resonant with the cavity. The analogy is the single atom - normally letting most of the light pass - which under special conditions may fully reflect the incident light beam. Using this analogy we are able to study the effects of practical experimental limitations in the atom-photon coupling, such as finite pulses, bandwidths, and solid angle coverage, and to use the optical resonator as a test bed for the implementation of the quantum experiment.
We present detailed discussions of cooling and trapping mechanisms for an atom in an optical trap inside an optical cavity, as relevant to recent experiments. The interference pattern of cavity QED and trapping fields in space makes the trapping well
We demonstrate an all-fiber cavity QED system with a trapped single atom in the strong coupling regime. We use a nanofiber Fabry-Perot cavity, that is, an optical nanofiber sandwiched by two fiber-Bragg-grating mirrors. Measurements of the cavity tra
Coherent manipulation of a quantum system is one of the main themes in current physics researches. In this work, we design a circuit QED system with a tunable coupling between an artificial atom and a superconducting resonator while keeping the cavit
Linking classical microwave electrical circuits to the optical telecommunication band is at the core of modern communication. Future quantum information networks will require coherent microwave-to-optical conversion to link electronic quantum process
A new method to track the motion of a single particle in the field of a high-finesse optical resonator is described. It exploits near-degenerate higher-order Gaussian cavity modes, whose symmetry is broken by the phase shift on the light induced by t