ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon Antibunching and Magnetospectroscopy of a Single Fluorine Donor in ZnSe

144   0   0.0 ( 0 )
 نشر من قبل Thaddeus Ladd
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the optical investigation of single electron spins bound to fluorine donor impurities in ZnSe. Measurements of photon antibunching establish the presence of single, isolated optical emitters, and magneto-optical studies are consistent with the presence of an exciton bound to the spin-impurity complex. The isolation of this single donor-bound exciton complex and its potential homogeneity offer promising prospects for a scalable semiconductor qubit with an optical interface.



قيم البحث

اقرأ أيضاً

180 - Shaojie Liu , Xing Lin , Feng Liu 2020
The second-order photon correlation function is of great importance in quantum optics which is typically measured with the Hanbury Brown and Twiss interferometer which employs a pair of single-photon detectors and a dual-channel time acquisition modu le. Here we demonstrate a new method to measure and extract the second-order correlation function with a standard single-photon avalanche photodiode (dead-time = 22 ns) and a single-channel time acquisition module. This is realized by shifting the informative coincidence counts near the zero-time delay to a time window which is not obliterated by the dead-time and after-pulse of detection system. The new scheme is verified by measuring the second-order correlation from a single colloidal nanocrystal. Photon antibunching is unambiguously observed and agrees well with the result measured using the standard HBT setup. Our scheme simplifies the higher-order correlation technique and might be favored in cost-sensitive circumstances.
Excitons bound to flourine atoms in ZnSe have the potential for several quantum optical applications. Examples include optically accessible quantum memories for quantum information processing and lasing without inversion. These applications require t he bound-exciton transitions to be coupled to cavities with high cooperativity factors, which results in the experimental observation of low-threshold lasing. We report such lasing from fluorine-doped ZnSe quantum wells in 3 and 6 micron microdisk cavities. Photoluminescence and selective photoluminescence spectroscopy confirm that the lasing is due to bound-exciton transitions.
93 - Tong Huang , Lei Tan 2021
We propose how to achieve strong photon antibunching effect in a cavity-QED system coupled with two Rydberg-Rydberg interaction atoms. Via calculating the equal time second order correlation function g(2)(0), we find that the unconventional photon bl ockade and the conventional photon blockade appear in the atom-driven scheme, and they are both significantly affected by the Rydberg-Rydberg interaction. We also find that under appropriate parameters, the photon antibunching and the mean photon number can be significantly enhanced by combining the conventional photon blockade and the unconventional photon blockade. In the cavity-driven scheme, the existence of the Rydberg-Rydberg interaction severely destroys the photon antibunching under the unconventional photon blockade mechanism. These results will help to guide the implementation of the single photon emitter in the Rydberg atoms-cavity system.
This proposal investigates the photon-statistics of light emitted by a statistical ensemble of cold atoms excited by the near-field of an optical nanofiber tip. Dipole-dipole interactions of atoms at such short distance from each other suppress the s imultaneous emission of more than one photon and lead to antibunching of photons. We consider a mean atom number on the order of one and deal with a poissonian mixture of one and two atoms including dipole-dipole interactions and collective decay. Time tracks of the atomic states are simulated in quantum Monte Carlo simulations from which the $g^{(2)}$-photon autocorrelation function is derived. The general results can be applied to any statistical ensemble of emitters that are interacting by dipole-dipole interactions.
137 - K. Yuasa , P. Facchi , H. Nakazato 2008
Lateral effects are analyzed in the antibunching of a beam of free non-interacting fermions. The emission of particles from a source is dynamically described in a 3D full quantum field-theoretical framework. The size of the source and the detectors, as well as the temperature of the source are taken into account and the behavior of the visibility is scrutinized as a function of these parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا