ترغب بنشر مسار تعليمي؟ اضغط هنا

Transcendence degree of zero-cycles and the structure of Chow motives

174   0   0.0 ( 0 )
 نشر من قبل Vladimir Guletskii
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show how the notion of the transcendence degree of a zero-cycle on a smooth projective variety X is related to the structure of the motive M(X). This can be of particular interest in the context of Blochs conjecture, especially for Godeaux surfaces, when the surface is given as a finite quotient of a suitable quintic in P^3.



قيم البحث

اقرأ أيضاً

202 - B.Calmes , V.Petrov , N.Semenov 2005
Let G be an adjoint simple algebraic group of inner type. We express the Chow motive (with integral coefficients) of some anisotropic projective G-homogeneous varieties in terms of motives of simpler G-homogeneous varieties, namely, those that corres pond to maximal parabolic subgroups of G. We decompose the motive of a generalized Severi-Brauer variety SB_2(A), where A is a division algebra of degree 5, into a direct sum of two indecomposable motives. As an application we provide another counter-example to the uniqueness of a direct sum decomposition in the category of motives with integral coefficients.
178 - Lie Fu , Charles Vial 2020
We prove that the Chow motives of two smooth cubic fourfolds whose Kuznetsov components are Fourier-Mukai derived-equivalent are isomorphic as Frobenius algebra objects. As a corollary, we obtain that there exists a Galois-equivariant isomorphism bet ween their l-adic cohomology Frobenius algebras. We also discuss the case where the Kuznetsov component of a smooth cubic fourfold is Fourier-Mukai derived-equivalent to a K3 surface.
We prove that a smooth proper universally CH_0-trivial variety X over a field k has universally trivial Brauer group. This fills a gap in the literature concerning the p-torsion of the Brauer group when k has characteristic p.
We study links between algebraic cycles on threefolds and finite-dimensionality of their motives with coefficients in Q. We decompose the motive of a non-singular projective threefold X with representable algebraic part of CH_0(X) into Lefschetz moti ves and the Picard motive of a certain abelian variety, isogenous to the corresponding intermediate Jacobian J^2(X) when the ground field is C. In particular, it implies motivic finite-dimensionality of Fano threefolds over a field. We also prove representability of zero-cycles on several classes of threefolds fibered by surfaces with algebraic H^2. This gives another new examples of three-dimensional varieties whose motives are finite-dimensional.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا