ترغب بنشر مسار تعليمي؟ اضغط هنا

Complexity classifications for different equivalence and audit problems for Boolean circuits

129   0   0.0 ( 0 )
 نشر من قبل Henning Schnoor
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Elmar B~A{P}hler




اسأل ChatGPT حول البحث

We study Boolean circuits as a representation of Boolean functions and consider different equivalence, audit, and enumeration problems. For a number of restricted sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we show these problems are at least NP-hard.


قيم البحث

اقرأ أيضاً

For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. In 2006, Gopalan et al. st udied connectivity properties of the solution graph and related complexity issues for CSPs, motivated mainly by research on satisfiability algorithms and the satisfiability threshold. They proved dichotomies for the diameter of connected components and for the complexity of the st-connectivity question, and conjectured a trichotomy for the connectivity question. Recently, we were able to establish the trichotomy [arXiv:1312.4524]. Here, we consider connectivity issues of satisfiability problems defined by Boolean circuits and propositional formulas that use gates, resp. connectives, from a fixed set of Boolean functions. We obtain dichotomies for the diameter and the two connectivity problems: on one side, the diameter is linear in the number of variables, and both problems are in P, while on the other side, the diameter can be exponential, and the problems are PSPACE-complete. For partially quantified formulas, we show an analogous dichotomy.
Block sensitivity ($bs(f)$), certificate complexity ($C(f)$) and fractional certificate complexity ($C^*(f)$) are three fundamental combinatorial measures of complexity of a boolean function $f$. It has long been known that $bs(f) leq C^{ast}(f) leq C(f) =O(bs(f)^2)$. We provide an infinite family of examples for which $C(f)$ grows quadratically in $C^{ast}(f)$ (and also $bs(f)$) giving optimal separations between these measures. Previously the biggest separation known was $C(f)=C^{ast}(f)^{log_{4.5}5}$. We also give a family of examples for which $C^{ast}(f)=Omega(bs(f)^{3/2})$. These examples are obtained by composing boolean functions in various ways. Here the composition $f circ g$ of $f$ with $g$ is obtained by substituting for each variable of $f$ a copy of $g$ on disjoint sets of variables. To construct and analyse these examples we systematically investigate the behaviour under function composition of these measures and also the sensitivity measure $s(f)$. The measures $s(f)$, $C(f)$ and $C^{ast}(f)$ behave nicely under composition: they are submultiplicative (where measure $m$ is submultiplicative if $m(f circ g) leq m(f)m(g)$) with equality holding under some fairly general conditions. The measure $bs(f)$ is qualitatively different: it is not submultiplicative. This qualitative difference was not noticed in the previous literature and we correct some errors that appeared in previous papers. We define the composition limit of a measure $m$ at function $f$, $m^{lim}(f)$ to be the limit as $k$ grows of $m(f^{(k)})^{1/k}$, where $f^{(k)}$ is the iterated composition of $f$ with itself $k$-times. For any function $f$ we show that $bs^{lim}(f) = (C^*)^{lim}(f)$ and characterize $s^{lim}(f), (C^*)^{lim}(f)$, and $C^{lim}(f)$ in terms of the largest eigenvalue of a certain set of $2times 2$ matrices associated with $f$.
Best match graphs (BMGs) are vertex-colored directed graphs that were introduced to model the relationships of genes (vertices) from different species (colors) given an underlying evolutionary tree that is assumed to be unknown. In real-life applicat ions, BMGs are estimated from sequence similarity data. Measurement noise and approximation errors usually result in empirically determined graphs that in general violate characteristic properties of BMGs. The arc modification problems for BMGs aim at correcting such violations and thus provide a means to improve the initial estimates of best match data. We show here that the arc deletion, arc completion and arc editing problems for BMGs are NP-complete and that they can be formulated and solved as integer linear programs. To this end, we provide a novel characterization of BMGs in terms of triples (binary trees on three leaves) and a characterization of BMGs with two colors in terms of forbidden subgraphs.
The main result of this paper is a generalization of the classical blossom algorithm for finding perfect matchings. Our algorithm can efficiently solve Boolean CSPs where each variable appears in exactly two constraints (we call it edge CSP) and all constraints are even $Delta$-matroid relations (represented by lists of tuples). As a consequence of this, we settle the complexity classification of planar Boolean CSPs started by Dvorak and Kupec. Using a reduction to even $Delta$-matroids, we then extend the tractability result to larger classes of $Delta$-matroids that we call efficiently coverable. It properly includes classes that were known to be tractable before, namely co-independent, compact, local, linear and binary, with the following caveat: we represent $Delta$-matroids by lists of tuples, while the last two use a representation by matrices. Since an $ntimes n$ matrix can represent exponentially many tuples, our tractability result is not strictly stronger than the known algorithm for linear and binary $Delta$-matroids.
154 - Stephen P. Jordan 2013
It is well-known that deciding equivalence of logic circuits is a coNP-complete problem. As a corollary, the problem of deciding weak equivalence of reversible circuits, i.e. ignoring the ancilla bits, is also coNP-complete. The complexity of decidin g strong equivalence, including the ancilla bits, is less obvious and may depend on gate set. Here we use Barringtons theorem to show that deciding strong equivalence of reversible circuits built from the Fredkin gate is coNP-complete. This implies coNP-completeness of deciding strong equivalence for other commonly used universal reversible gate sets, including any gate set that includes the Toffoli or Fredkin gate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا