ﻻ يوجد ملخص باللغة العربية
We investigate the electronic and magnetic properties of the frustrated triangular-lattice antiferromagnets Cs$_2$CuCl$_4$ and Cs$_2$CuBr$_4$ in the framework of density functional theory. Analysis of the exchange couplings J and J using the available X-ray structural data corroborates the values obtained from experimental results for Cs$_2$CuBr$_4$ but not for Cs$_2$CuCl$_4$. In order to understand this discrepancy, we perform a detailed study of the effect of structural optimization on the exchange couplings of Cs$_2$CuCl$_4$ employing different exchange-correlation functionals. We find that the exchange couplings depend on rather subtle details of the structural optimization and that only when the insulating state (mediated through spin polarization) is present in the structural optimization, we do have good agreement between the calculated and the experimentally determined exchange couplings. Finally, we discuss the effect of interlayer couplings as well as longer-ranged couplings in both systems.
We report $^{133}$Cs nuclear magnetic resonance (NMR) measurements on the 2D frustrated Heisenberg antiferromagnet Cs$_2$CuCl$_4$ down to 2 K and up to 15 T. We show that $^{133}$Cs NMR is a good probe of the magnetic degrees of freedom in this mater
The field induced magnetic phase transitions of Cs$_2$CuBr$_4$ were investigated by means of magnetization process and neutron scattering experiments. This system undergoes magnetic phase transition at Ne{e}l temperature $T_mathrm{N}=1.4$ K at zero f
The crystal structure of Cs$_2$CuBr$_4$ is the same as that of Cs$_2$CuCl$_4$, which has been characterized as a spin-1/2 quasi-two-dimensional frustrated system. The magnetic properties of Cs$_2$CuBr$_4$ were investigated by magnetization and specif
We report on electron spin resonance (ESR) studies of the spin relaxation in Cs$_2$CuCl$_4$. The main source of the ESR linewidth at temperatures $T leq 150$ K is attributed to the uniform Dzyaloshinskii-Moriya interaction. The vector components of t
The spin excitations in the spin-liquid phase of the anisotropic triangular lattice quantum antiferromagnet Cs$_2$CuCl$_4$ have been shown to propagate dominantly along the crystallographic $b$ axis. To test this dimensional reduction scenario, we ha