ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement charge of thermal states

90   0   0.0 ( 0 )
 نشر من قبل Ming-Yong Ye
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement charge is an operational measure to quantify nonlocalities in ensembles consisting of bipartite quantum states. Here we generalize this nonlocality measure to single bipartite quantum states. As an example, we analyze the entanglement charges of some thermal states of two-qubit systems and show how they depend on the temperature and the system parameters in an analytical way.



قيم البحث

اقرأ أيضاً

115 - O. Osenda , , G.A. Raggio 2005
We revisist the issue of entanglement of thermal equilibrium states in composite quantum systems. The possible scenarios are exemplified in bipartite qubit/qubit and qubit/qutrit systems.
We study the entanglement distillability properties of thermal states of many-body systems. Following the ideas presented in [D.Cavalcanti et al., arxiv:0705.3762], we first discuss the appearance of bound entanglement in those systems satisfying an entanglement area law. Then, we extend these results to other topologies, not necessarily satisfying an entanglement area law. We also study whether bound entanglement survives in the macroscopic limit of an infinite number of particles.
We address the presence of bound entanglement in strongly-interacting spin systems at thermal equilibrium. In particular, we consider thermal graph states composed of an arbitrary number of particles. We show that for a certain range of temperatures no entanglement can be extracted by means of local operations and classical communication, even though the system is still entangled. This is found by harnessing the independence of the entanglement in some bipartitions of such states with the systems size. Specific examples for one- and two-dimensional systems are given. Our results thus prove the existence of thermal bound entanglement in an arbitrary large spin system with finite-range local interactions.
Two qubits in pure entangled states going through separate paths and interacting with their own individual environments will gradually lose their entanglement. Here we show that the entanglement change of a two-qubit state due to amplitude damping no ises can be recovered by entanglement swapping. Some initial states can be asymptotically purified into maximally entangled states by iteratively using our protocol.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا