ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth and replication of red rain cells at 121 oC and their red fluorescence

97   0   0.0 ( 0 )
 نشر من قبل Carl H. Gibson
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rajkumar Gangappa




اسأل ChatGPT حول البحث

We have shown that the red cells found in the Red Rain (which fell on Kerala, India, in 2001) survive and grow after incubation for periods of up to two hours at 121 oC . Under these conditions daughter cells appear within the original mother cells and the number of cells in the samples increases with length of exposure to 121 oC. No such increase in cells occurs at room temperature, suggesting that the increase in daughter cells is brought about by exposure of the Red Rain cells to high temperatures. This is an independent confirmation of results reported earlier by two of the present authors, claiming that the cells can replicate under high pressure at temperatures up to 300 oC. The flourescence behaviour of the red cells is shown to be in remarkable correspondence with the extended red emission observed in the Red Rectangle planetary nebula and other galactic and extragalactic dust clouds, suggesting, though not proving, an extraterrestrial origin.



قيم البحث

اقرأ أيضاً

We introduce a novel technique for empirically understanding galaxy evolution. We use empirically determined stellar evolution models to predict the past evolution of the Sloan Digital Sky Survey (SDSS-II) Luminous Red Galaxy (LRG) sample without any a-priori assumption about galaxy evolution. By carefully contrasting the evolution of the predicted and observed number and luminosity densities we test the passive evolution scenario for galaxies of different luminosity, and determine minimum merger rates. We find that the LRG population is not purely coeval, with some of galaxies targeted at z<0.23 and at z>0.34 showing different dynamical growth than galaxies targeted throughout the sample. Our results show that the LRG population is dynamically growing, and that this growth must be dominated by the faint end. For the most luminous galaxies, we find lower minimum merger rates than required by previous studies that assume passive stellar evolution, suggesting that some of the dynamical evolution measured previously was actually due to galaxies with non-passive stellar evolution being incorrectly modelled. Our methodology can be used to identify and match coeval populations of galaxies across cosmic times, over one or more surveys.
250 - J. M. Gabor 2012
We examine the cosmic growth of the red sequence in a cosmological hydrodynamic simulation that includes a heuristic prescription for quenching star formation that yields a realistic passive galaxy population today. In this prescription, halos domina ted by hot gas are continually heated to prevent their coronae from fueling new star formation. Hot coronae primarily form in halos above sim10^12 Modot, so that galaxies with stellar masses sim10^10.5 Modot are the first to be quenched and move onto the red sequence at z > 2. The red sequence is concurrently populated at low masses by satellite galaxies in large halos that are starved of new fuel, resulting in a dip in passive galaxy number densities around sim10^10 Modot. Stellar mass growth continues for galaxies even after joining the red sequence, primarily through minor mergers with a typical mass ratio sim1:5. For the most massive systems, the size growth implied by the distribution of merger mass ratios is typically sim2times the corresponding mass growth, consistent with observations. This model reproduces mass-density and colour-density trends in the local universe, with essentially no evolution to z = 1, with the hint that such relations may be washed out by z sim 2. Simulated galaxies are increasingly likely to be red at high masses or high local overdensities. In our model, the presence of surrounding hot gas drives the trends with both mass and environment.
133 - Gael Prado 2014
The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into mic rochannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, $eta_{mem}^{2D}sim 10^{-7}$ N$cdot$s$cdot$m$^{-1}$. By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of $eta_{mem}^{2D}$, and reconcile seemingly conflicting conclusions from previous works.
The fundamental band for the OC-C2H2 dimer and two combination bands involving the intermolecular bending modes nu9 and nu8 in the carbon monoxide CO stretch region are re-examined. Spectra are obtained using a pulsed supersonic slit jet expansion pr obed with a mode-hop free tunable infrared quantum cascade laser. Analogous bands for OC-C2D2 and the fundamental for OC-DCCH as an impurity are also observed and analysed. A much weaker band in the same spectral region is assigned to a new mixed trimer, CO-(C2H2)2. The trimer band is composed uniquely of a-type transitions, establishing that the CO monomer is nearly aligned with the a-inertial axis. The observed rotational constants agree well with ab initio calculations and a small inertial defect value indicates that the trimer is planar. The structure is a compromise between the T-shaped structure of free acetylene dimer and the linear geometry of free OC-C2H2. A similar band for the fully deuterated isotopologue CO-(C2D2)2 confirms our assignment.
We have traced the past 7 Gyr of red galaxy stellar mass growth within dark matter halos. We have determined the halo occupation distribution, which describes how galaxies reside within dark matter halos, using the observed luminosity function and cl ustering of 40,696 0.2<z<1.0 red galaxies in Bootes. Half of 10^{11.9} Msun/h halos host a red central galaxy, and this fraction increases with increasing halo mass. We do not observe any evolution of the relationship between red galaxy stellar mass and host halo mass, although we expect both galaxy stellar masses and halo masses to evolve over cosmic time. We find that the stellar mass contained within the red population has doubled since z=1, with the stellar mass within red satellite galaxies tripling over this redshift range. In cluster mass halos most of the stellar mass resides within satellite galaxies and the intra-cluster light, with a minority of the stellar mass residing within central galaxies. The stellar masses of the most luminous red central galaxies are proportional to halo mass to the power of a third. We thus conclude that halo mergers do not always lead to rapid growth of central galaxies. While very massive halos often double in mass over the past 7 Gyr, the stellar masses of their central galaxies typically grow by only 30%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا