ﻻ يوجد ملخص باللغة العربية
The Atacama B-mode Search (ABS) experiment is a 145 GHz polarimeter designed to measure the B-mode polarization of the Cosmic Microwave Background (CMB) at large angular scales. The ABS instrument will ship to the Atacama Desert of Chile fully tested and ready to observe in 2010. ABS will image large-angular-scale CMB polarization anisotropies onto a focal plane of 240 feedhorn-coupled, transition-edge sensor (TES) polarimeters, using a cryogenic crossed-Dragone design. The ABS detectors, which are fabricated at NIST, use orthomode transducers to couple orthogonal polarizations of incoming radiation onto separate TES bolometers. The incoming radiation is modulated by an ambient-temperature half-wave plate in front of the vacuum window at an aperture stop. Preliminary detector characterization indicates that the ABS detectors can achieve a sensitivity of 300 $mu K sqrt{s}$ in the field. This paper describes the ABS optical design and detector readout scheme, including feedhorn design and performance, magnetic shielding, focal plane architecture, and cryogenic electronics.
The Atacama B-Mode Search (ABS) instrument is a cryogenic ($sim$10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the
We evaluate the modulation of Cosmic Microwave Background (CMB) polarization using a rapidly-rotating, half-wave plate (HWP) on the Atacama B-Mode Search (ABS). After demodulating the time-ordered-data (TOD), we find a significant reduction of atmosp
SPT-3G is a polarization-sensitive receiver, installed on the South Pole Telescope, that measures the anisotropy of the cosmic microwave background (CMB) from degree to arcminute scales. The receiver consists of ten 150~mm-diameter detector wafers, c
The Atacama B-mode Search (ABS) is an experiment designed to measure cosmic microwave background (CMB) polarization at large angular scales ($ell>40$). It operated from the ACT site at 5190~m elevation in northern Chile at 145 GHz with a net sensitiv
We describe the Cosmic Microwave Background (CMB) polarization experiment called Polarbear. This experiment will use the dedicated Huan Tran Telescope equipped with a powerful 1,200-bolometer array receiver to map the CMB polarization with unpreceden