ترغب بنشر مسار تعليمي؟ اضغط هنا

Decomposing Star Formation and Active Galactic Nucleus with Spitzer Mid-Infrared Spectra: Luminosity Functions and Co-Evolution

32   0   0.0 ( 0 )
 نشر من قبل Hai Fu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Spitzer 7-38um spectra for a 24um flux limited sample of galaxies at z~0.7 in the COSMOS field. The detailed high-quality spectra allow us to cleanly separate star formation (SF) and active galactic nucleus (AGN) in individual galaxies. We first decompose mid-infrared Luminosity Functions (LFs). We find that the SF 8um and 15um LFs are well described by Schechter functions. AGNs dominate the space density at high luminosities, which leads to the shallow bright-end slope of the overall mid-infrared LFs. The total infrared (8-1000um) LF from 70um selected galaxies shows a shallower bright-end slope than the bolometrically corrected SF 15um LF, owing to the intrinsic dispersion in the mid-to-far-infrared spectral energy distributions. We then study the contemporary growth of galaxies and their supermassive black holes (BHs). Seven of the 31 Luminous Infrared Galaxies with Spitzer spectra host luminous AGNs, implying an AGN duty cycle of 23+/-9%. The time-averaged ratio of BH accretion rate and SF rate matches the local M_BH-M_bulge relation and the M_BH-M_host relation at z ~ 1. These results favor co-evolution scenarios in which BH growth and intense SF happen in the same event but the former spans a shorter lifetime than the latter. Finally, we compare our mid-infrared spectroscopic selection with other AGN identification methods and discuss candidate Compton-thick AGNs in the sample. While only half of the mid-infrared spectroscopically selected AGNs are detected in X-ray, ~90% of them can be identified with their near-infrared spectral indices.

قيم البحث

اقرأ أيضاً

78 - Tomotsugu Goto 2010
Infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution. The AKARI IR space telescope performed all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160um) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can much more precisely measure the total infrared luminosity (L_TIR) of individual galaxies, and thus, the total infrared luminosity density in the local Universe. By fitting IR SED models, we have re-measured L_TIR of the IRAS Revised Bright Galaxy Sample. We present mid-IR monochromatic luminosity to L_TIR
69 - G.E. Magdis 2013
We study the mid- to far-IR properties of a 24um-selected flux-limited sample (S24 > 5mJy) of 154 intermediate redshift (<z>~0.15), infrared luminous galaxies, drawn from the 5MUSES survey. By combining existing mid-IR spectroscopy and new Herschel S PIRE submm photometry from the HerMES program, we derived robust total infrared luminosity (LIR) and dust mass (Md) estimates and infered the relative contribution of the AGN to the infrared energy budget of the sources. We found that the total infrared emission of galaxies with weak 6.2um PAH emission (EW<0.2um) is dominated by AGN activity, while for galaxies with EW>0.2um more than 50% of the LIR arises from star formation. We also found that for galaxies detected in the 250-500um Herschel bands an AGN has a statistically insignificant effect on the temperature of the cold dust and the far-IR colours of the host galaxy, which are primarily shaped by star formation activity. For star-forming galaxies we reveal an anti-correlation between the LIR-to-rest-frame 8um luminosity ratio, IR8 = LIRL8, and the strength of PAH features. We found that this anti-correlation is primarily driven by variations in the PAHs emission, and not by variations in the 5-15um mid-IR continuum emission. Using the [NeIII]/[NeII] line ratio as a tracer of the hardness of the radiation field, we confirm that galaxies with harder radiation fields tend to exhibit weaker PAH features, and found that they have higher IR8 values and higher dust-mass-weighted luminosities (LIR/Md), the latter being a proxy for the dust temperature (Td). We argue that these trends originate either from variations in the environment of the star-forming regions or are caused by variations in the age of the starburst. Finally, we provide scaling relations that will allow estimating LIR, based on single-band observations with the mid-infrared instrument, on board the upcoming JWST.
350 - X. Dai 2009
We present galaxy luminosity functions at 3.6, 4.5, 5.8, and 8.0 micron measured by combining photometry from the IRAC Shallow Survey with redshifts from the AGN and Galaxy Evolution Survey of the NOAO Deep Wide-Field Survey Bootes field. The well-de fined IRAC samples contain 3800-5800 galaxies for the 3.6-8.0 micron bands with spectroscopic redshifts and z < 0.6. We obtained relatively complete luminosity functions in the local redshift bin of z < 0.2 for all four IRAC channels that are well fit by Schechter functions. We found significant evolution in the luminosity functions for all four IRAC channels that can be fit as an evolution in M* with redshift, Delta M* = Qz. While we measured Q=1.2pm0.4 and 1.1pm0.4 in the 3.6 and 4.5 micron bands consistent with the predictions from a passively evolving population, we obtained Q=1.8pm1.1 in the 8.0 micron band consistent with other evolving star formation rate estimates. We compared our LFs with the predictions of semi-analytical galaxy formation and found the best agreement at 3.6 and 4.5 micron, rough agreement at 8.0 micron, and a large mismatch at 5.8 micron. These models also predicted a comparable Q value to our luminosity functions at 8.0 micron, but predicted smaller values at 3.6 and 4.5 micron. We also measured the luminosity functions separately for early and late-type galaxies. While the luminosity functions of late-type galaxies resemble those for the total population, the luminosity functions of early-type galaxies in the 3.6 and 4.5 micron bands indicate deviations from the passive evolution model, especially from the measured flat luminosity density evolution. Combining our estimates with other measurements in the literature, we found (53pm18)% of the present stellar mass of early-type galaxies has been assembled at z=0.7.
We present new observational determination of the evolution of the rest-frame 70 and 160 micron and total infrared (TIR) galaxy luminosity functions (LFs) using 70 micron data from the Spitzer Wide-area Infrared Extragalactic Legacy Survey (SWIRE). T he LFs were constructed for sources with spectroscopic redshifts only in the XMM-LSS and Lockman Hole fields from the SWIRE photometric redshift catalogue. The 70 micron and TIR LFs were constructed in the redshift range 0<z<1.2 and the 160 micron LF was constructed in the redshift range 0<z<0.5 using a parametric Bayesian and the vmax methods. We assume in our models, that the faint-end power-law index of the LF does not evolve with redshifts. We find the the double power-law model is a better representation of the IR LF than the more commonly used power-law and Gaussian model. We model the evolution of the FIR LFs as a function of redshift where where the characteristic luminosity, $L^ast$ evolve as $propto(1+z)^{alpha_textsc{l}}$. The rest-frame 70 micron LF shows a strong luminosity evolution out to z=1.2 with alpha_l=3.41^{+0.18}_{-0.25}. The rest-frame 160 micron LF also showed rapid luminosity evolution with alpha_l=5.53^{+0.28}_{-0.23} out to z=0.5. The rate of evolution in luminosity is consistent with values estimated from previous studies using data from IRAS, ISO and Spitzer. The TIR LF evolves in luminosity with alpha_l=3.82^{+0.28}_{-0.16} which is in agreement with previous results from Spitzer 24 micron which find strong luminosity evolution. By integrating the LF we calculated the co-moving IR luminosity density out to z=1.2, which confirm the rapid evolution in number density of LIRGs and ULIRGs which contribute ~68^{+10}_{-07} % to the co-moving star formation rate density at z=1.2. Our results based on 70 micron data confirms that the bulk of the star formation at z=1 takes place in dust obscured objects.
65 - J. Singal , J. George , A. Gerber 2016
We determine the 22$mu$m luminosity evolution and luminosity function for quasars from a data set of over 20,000 objects obtained by combining flux-limited Sloan Digital Sky Survey optical and Wide field Infrared Survey Explorer mid-infrared data. We apply methods developed in previous works to access the intrinsic population distributions non-parametrically, taking into account the truncations and correlations inherent in the data. We find that the population of quasars exhibits positive luminosity evolution with redshift in the mid-infrared, but with considerably less mid-infrared evolution than in the optical or radio bands. With the luminosity evolutions accounted for, we determine the density evolution and local mid-infrared luminosity function. The latter displays a sharp flattening at local luminosities below $sim 10^{31}$ erg sec$^{-1}$ Hz$^{-1}$, which has been reported previously at 15 $mu$m for AGN classified as both type-1 and type-2. We calculate the integrated total emission from quasars at 22 $mu$m and find it to be a small fraction of both the cosmic infrared background light and the integrated emission from all sources at this wavelength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا