ﻻ يوجد ملخص باللغة العربية
Among the theories beyond the Standard Model (SM) of particle physics Supersymmetry (SUSY) provides an excellent dark matter (DM) candidate, the neutralino. One clear prediction of cosmology is the annihilation cross section of DM particles, assuming them to be a thermal relic from the early universe. In most of the parameter space of Supersymmetry the annihilation cross section is too small compared with the prediction of cosmology. However, for large values of the tan beta parameter the annihilation through s-channel pseudoscalar Higgs exchange yields the correct relic density in practically the whole range of possible SUSY masses up to the few TeV range. The required values of tan beta are typically around 50, i.e. of the order of top and bottom mass ratio, which happens to be also the range allowing for Yukawa unification in a Grand Unified Theory with gauge coupling unification. For such large values of tan beta the associated production of the heavier Higgses, which is enhanced by tan beta squared, becomes three orders of magnitude larger than the production of a simlar SM-like Higgs and could be observable as one of the first hints of new physics at the LHC.
The ATLAS and CMS experiments did not find evidence for Supersymmetry using close to 5/fb of published LHC data at a center-of-mass energy of 7 TeV. We combine these LHC data with data on B_s -> mu mu (LHCb experiment), the relic density (WMAP and ot
We review the most relevant LHC searches at $sqrt{s}$ = 8 TeV looking for low mass bosons arising from exotic decay of the Standard Model Higgs and highlighting their impact on both supersymmetric and not supersymmetric Beyond the Standard Model scenarios.
The goal of this report is to summarize the current situation and discuss possible search strategies for charged scalars, in non-supersymmetric extensions of the Standard Model at the LHC. Such scalars appear in Multi-Higgs-Doublet models (MHDM), in
We analyze the Two-Higgs-Doublet Models (2HDMs) of Type I and II for consistency with the latest measurements of the ~125.5 GeV Higgs-like signal at the LHC. To this end, we perform scans of the 2HDM parameter space taking into account all relevant p
A light singlino in the NMSSM can reduce considerably the missing transverse energy at the end of sparticle decay cascades; instead, light NMSSM-specific Higgs bosons can be produced. Such scenarios can be consistent with present constraints from the