ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on Supersymmetry from Relic Density compared with future Higgs Searches at the LHC

80   0   0.0 ( 0 )
 نشر من قبل Wim de Boer
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف Conny Beskidt




اسأل ChatGPT حول البحث

Among the theories beyond the Standard Model (SM) of particle physics Supersymmetry (SUSY) provides an excellent dark matter (DM) candidate, the neutralino. One clear prediction of cosmology is the annihilation cross section of DM particles, assuming them to be a thermal relic from the early universe. In most of the parameter space of Supersymmetry the annihilation cross section is too small compared with the prediction of cosmology. However, for large values of the tan beta parameter the annihilation through s-channel pseudoscalar Higgs exchange yields the correct relic density in practically the whole range of possible SUSY masses up to the few TeV range. The required values of tan beta are typically around 50, i.e. of the order of top and bottom mass ratio, which happens to be also the range allowing for Yukawa unification in a Grand Unified Theory with gauge coupling unification. For such large values of tan beta the associated production of the heavier Higgses, which is enhanced by tan beta squared, becomes three orders of magnitude larger than the production of a simlar SM-like Higgs and could be observable as one of the first hints of new physics at the LHC.

قيم البحث

اقرأ أيضاً

The ATLAS and CMS experiments did not find evidence for Supersymmetry using close to 5/fb of published LHC data at a center-of-mass energy of 7 TeV. We combine these LHC data with data on B_s -> mu mu (LHCb experiment), the relic density (WMAP and ot her cosmological data) and upper limits on the dark matter scattering cross sections on nuclei (XENON100 data). The excluded regions in the constrained Minimal Supersymmetric SM (CMSSM) lead to gluinos excluded below 1270 GeV and dark matter candidates below 220 GeV for values of the scalar masses (m_0) below 1500 GeV. For large m_0 values the limits of the gluinos and the dark matter candidate are reduced to 970 GeV and 130 GeV, respectively. If a Higgs mass of 125 GeV is imposed in the fit, the preferred SUSY region is above this excluded region, but the size of the preferred region is strongly dependent on the assumed theoretical error.
We review the most relevant LHC searches at $sqrt{s}$ = 8 TeV looking for low mass bosons arising from exotic decay of the Standard Model Higgs and highlighting their impact on both supersymmetric and not supersymmetric Beyond the Standard Model scenarios.
The goal of this report is to summarize the current situation and discuss possible search strategies for charged scalars, in non-supersymmetric extensions of the Standard Model at the LHC. Such scalars appear in Multi-Higgs-Doublet models (MHDM), in particular in the popular Two-Higgs-Doublet model (2HDM), allowing for charged and additional neutral Higgs bosons. These models have the attractive property that electroweak precision observables are automatically in agreement with the Standard Model at the tree level. For the most popular version of this framework, Model~II, a discovery of a charged Higgs boson remains challenging, since the parameter space is becoming very constrained, and the QCD background is very high. We also briefly comment on models with dark matter which constrain the corresponding charged scalars that occur in these models. The stakes of a possible discovery of an extended scalar sector are very high, and these searches should be pursued in all conceivable channels, at the LHC and at future colliders.
We analyze the Two-Higgs-Doublet Models (2HDMs) of Type I and II for consistency with the latest measurements of the ~125.5 GeV Higgs-like signal at the LHC. To this end, we perform scans of the 2HDM parameter space taking into account all relevant p re-LHC constraints as well as the most recent limits coming from searches for heavy Higgs-like states at the LHC. The current status of the 2HDMs of Type I and II is discussed assuming that the observed 125.5 GeV state is one of the two CP-even Higgs bosons, either the lighter h or the heavier H. Implications for future experiments, including expectations regarding other lighter or heavier Higgs bosons are given. The possible importance of heavier Higgs bosons feeding the signals for the 125.5 GeV state is also evaluated.
A light singlino in the NMSSM can reduce considerably the missing transverse energy at the end of sparticle decay cascades; instead, light NMSSM-specific Higgs bosons can be produced. Such scenarios can be consistent with present constraints from the LHC with all sparticle masses below ~1 TeV. We discuss search strategies, which do not rely on missing transverse energy, for such scenarios at the next run of the LHC near 14 TeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا