ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical Fluctuations and Correlations in Hadronic Equilibrium Systems

29   0   0.0 ( 0 )
 نشر من قبل Michael Hauer
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف Michael Hauer




اسأل ChatGPT حول البحث

This thesis is dedictaed to the study of fluctuation and correlation observables of hadronic equilibrium systems. The statistical hadronization model of high energy physics, in its ideal, i.e. non-interacting, gas approximation will be investigated in different ensemble formulations. The hypothesis of thermal and chemical equilibrium in high energy interaction will be tested against qualitative and quantitative predictions.

قيم البحث

اقرأ أيضاً

We calculate volume-independent ratios of cumulants of the net-proton number distribution up to sixth order in a fireball that cools down after the chemical freeze-out. A hadron resonance gas model is used together with the assumption of partial chem ical equilibrium, which fixes the number of observed stable hadrons after the chemical freeze-out. It is shown that due to only weak departure from the statistical Boltzmann distribution, also the volume-independent ratios of higher-order cumulants of the net-proton number show only weak dependence on the temperature. This observation supports the possibility to measure non-critical cumulants at chemical freeze-out even after subsequent cooling in the hadronic phase. Cumulants of the net-baryon number behave similarly, while those for the kaon number vary more strongly with the temperature. Our results are relevant for the current fluctuation studies of the RHIC-BES runs.
Particle number fluctuations and correlations in nucleus-nucleus collisions at SPS and RHIC energies are studied within the statistical hadron-resonance gas model in different statistical ensembles and in the Hadron-String-Dynamics (HSD) transport ap proach. Event-by-event fluctuations of the proton to pion and kaon to proton number ratios are calculated in the HSD model for the samples of most central collision events and compared with the available experimental data. The role of the experimental acceptance and centrality selection is discussed.
The multiplicity fluctuations in A+A collisions at SPS and RHIC energies are studied within the HSD transport approach. We find a dominant role of the fluctuations in the nucleon participant number for the final fluctuations. In order to extract phys ical fluctuations one should decrease the fluctuations in the participants number. This can be done considering very central collisions. The system size dependence of the multiplicity fluctuations in central A+A collisions at the SPS energy range -- obtained in the HSD and UrQMD transport models -- is presented. The results can be used as a `background for experimental measurements of fluctuations as a signal of the critical point. Event-by-event fluctuations of the $K/pi$, $K/p$ and $p/pi$ ratios in A+A collisions are also studied. Event-by-event fluctuations of the kaon to pion number ratio in nucleus-nucleus collisions are studied for SPS and RHIC energies. We find that the HSD model can qualitatively reproduce the measured excitation function for the $K/pi$ ratio fluctuations in central Au+Au (or Pb+Pb) collisions from low SPS up to top RHIC energies. The forward-backward correlation coefficient measured by the STAR Collaboration in Au+Au collisions at RHIC is also studied. We discuss the effects of initial collision geometry and centrality bin definition on correlations in nucleus-nucleus collisions. We argue that a study of the dependence of correlations on the centrality bin definition as well as the bin size may distinguish between these `trivial correlations and correlations arising from `new physics.
New results on particle correlations and event-by-event fluctuations presented at Quark Matter 2004 are reviewed.
The study of correlations and fluctuations can provide evidence for the production of the quark-gluon plasma (QGP) in relativistic heavy ion collisions. Various theories predict that the production of a QGP phase in relativistic heavy ion collisions could produce significant event-by-event correlations and fluctuations in, transverse momentum, multiplicity, etc. Some of the recent results using STAR at RHIC will be presented along with results from other experiments at RHIC. The focus is on forward-backward multiplicity correlations, balance function, charge and transverse momentum fluctuations, and correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا