ترغب بنشر مسار تعليمي؟ اضغط هنا

Metropolitan all-pass and inter-city quantum communication network

148   0   0.0 ( 0 )
 نشر من قبل Kai Chen
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have demonstrated a metropolitan all-pass quantum communication network in field fiber for four nodes. Any two nodes of them can be connected in the network to perform quantum key distribution (QKD). An optical switching module is presented that enables arbitrary 2-connectivity among output ports. Integrated QKD terminals are worked out, which can operate either as a transmitter, a receiver, or even both at the same time. Furthermore, an additional link in another city of 60 km fiber (up to 130 km) is seamless integrated into this network based on a trusted relay architecture. On all the links, we have implemented protocol of decoy state scheme. All of necessary electrical hardware, synchronization, feedback control, network software, execution of QKD protocols are made by tailored designing, which allow a completely automatical and stable running. Our system has been put into operation in Hefei in August 2009, and publicly demonstrated during an evaluation conference on quantum network organized by the Chinese Academy of Sciences on August 29, 2009. Real-time voice telephone with one-time pad encoding between any two of the five nodes (four all-pass nodes plus one additional node through relay) is successfully established in the network within 60km.



قيم البحث

اقرأ أيضاً

If a photon interacts with a member of an entangled photon pair via a so-called Bell-state measurement (BSM), its state is teleported over principally arbitrary distances onto the second member of the pair. Starting in 1997, this puzzling prediction of quantum mechanics has been demonstrated many times; however, with one very recent exception, only the photon that received the teleported state, if any, travelled far while the photons partaking in the BSM were always measured closely to where they were created. Here, using the Calgary fibre network, we report quantum teleportation from a telecommunication-wavelength photon, interacting with another telecommunication photon after both have travelled over several kilometres in bee-line, onto a photon at 795~nm wavelength. This improves the distance over which teleportation takes place from 818~m to 6.2~km. Our demonstration establishes an important requirement for quantum repeater-based communications and constitutes a milestone on the path to a global quantum Internet.
Quantum key distribution (QKD) enables secure key exchanges between two remote users. The ultimate goal of secure communication is to establish a global quantum network. The existing field tests suggest that quantum networks are feasible. To achieve a practical quantum network, we need to overcome several challenges, including realising versatile topologies for large scales, simple network maintenance, extendable configuration, and robustness to node failures. To this end, we present a field operation of a quantum metropolitan-area network with 46 nodes and show that all these challenges can be overcome with cutting-edge quantum technologies. In particular, we realise different topological structures and continuously run the network for 31 months, by employing standard equipment for network maintenance with an extendable configuration. We realise QKD pairing and key management with a sophisticated key control center. In this implementation, the final keys have been used for secure communication such as real-time voice telephone, text messaging, and file transmission with one-time pad encryption, which can support 11 pairs of users to make audio calls simultaneously. Combined with inter-city quantum backbone and ground-satellite links, our metropolitan implementation paves the way toward a global quantum network.
Quantum key distribution (QKD) provides information theoretically secures key exchange requiring authentication of the classic data processing channel via pre-sharing of symmetric private keys. In previous studies, the lattice-based post-quantum digi tal signature algorithm Aigis-Sig, combined with public-key infrastructure (PKI) was used to achieve high-efficiency quantum security authentication of QKD, and its advantages in simplifying the MAN network structure and new user entry were demonstrated. This experiment further integrates the PQC algorithm into the commercial QKD system, the Jinan field metropolitan QKD network comprised of 14 user nodes and 5 optical switching nodes. The feasibility, effectiveness and stability of the post-quantum cryptography (PQC) algorithm and advantages of replacing trusted relays with optical switching brought by PQC authentication large-scale metropolitan area QKD network were verified. QKD with PQC authentication has potential in quantum-secure communications, specifically in metropolitan QKD networks.
A hierarchical metropolitan quantum cryptography network upon the inner-city commercial telecom fiber cables is reported in this paper. The seven-user network contains a four-node backbone net with one node acting as the subnet gateway, a two-user su bnet and a single-fiber access link, which is realized by the Faraday-Michelson Interferometer set-ups. The techniques of the quantum router, optical switch and trusted relay are assembled here to guarantee the feasibility and expandability of the quantum cryptography network. Five nodes of the network are located in the government departments and the secure keys generated by the quantum key distribution network are utilized to encrypt the instant video, sound, text messages and confidential files transmitting between these bureaus. The whole implementation including the hierarchical quantum cryptographic communication network links and corresponding application software shows a big step toward the practical user-oriented network with high security level.
The Illinois Express Quantum Network (IEQNET) is a program to realize metro-scale quantum networking over deployed optical fiber using currently available technology. IEQNET consists of multiple sites that are geographically dispersed in the Chicago metropolitan area. Each site has one or more quantum nodes (Q-nodes) representing the communication parties in a quantum network. Q-nodes generate or measure quantum signals such as entangled photons and communicate the results via standard, classical, means. The entangled photons in IEQNET nodes are generated at multiple wavelengths, and are selectively distributed to the desired users via optical switches. Here we describe the network architecture of IEQNET, including the Internet-inspired layered hierarchy that leverages software-defined-networking (SDN) technology to perform traditional wavelength routing and assignment between the Q-nodes. Specifically, SDN decouples the control and data planes, with the control plane being entirely classical. Issues associated with synchronization, calibration, network monitoring, and scheduling will be discussed. An important goal of IEQNET is demonstrating the extent to which the control plane can coexist with the data plane using the same fiber lines. This goal is furthered by the use of tunable narrow-band optical filtering at the receivers and, at least in some cases, a wide wavelength separation between the quantum and classical channels. We envision IEQNET to aid in developing robust and practical quantum networks by demonstrating metro-scale quantum communication tasks such as entanglement distribution and quantum-state teleportation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا