ترغب بنشر مسار تعليمي؟ اضغط هنا

A high resolution line survey of IRC+10216 with Herschel. First results: Detection of warm silicon dicarbide SiC2

126   0   0.0 ( 0 )
 نشر من قبل J. R. Goicoechea
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first results of a high-spectral-resolution survey of the carbon-rich evolved star IRC+10216 that was carried out with the HIFI spectrometer onboard Herschel. This survey covers all HIFI bands, with a spectral range from 488 to 1901GHz. In this letter we focus on the band-1b spectrum, in a spectral range 554.5-636.5GHz, where we identified 130 spectral features with intensities above 0.03 K and a signal-to-noise ratio >5. Detected lines arise from HCN, SiO, SiS, CS, CO, metal-bearing species and, surprisingly, silicon dicarbide (SiC2). We identified 55 SiC2 transitions involving energy levels between 300 and 900 K. By analysing these rotational lines, we conclude that SiC2 is produced in the inner dust formation zone, with an abundance of ~2x10^-7 relative to molecular hydrogen. These SiC2 lines have been observed for the first time in space and have been used to derive an SiC2 rotational temperature of ~204 K and a source-averaged column density of ~6.4x10^15 cm^-2. Furthermore, the high quality of the HIFI data set was used to improve the spectroscopic rotational constants of SiC2.

قيم البحث

اقرأ أيضاً

62 - Y. Gong , C. Henkel , S. Spezzano 2014
IRC +10216 is the prototypical carbon star exhibiting an extended molecular circumstellar envelope. Its spectral properties are therefore the template for an entire class of objects. The main goal is to systematically study the $lambda$ $sim$1.3 cm s pectral line characteristics of IRC +10216. We carried out a spectral line survey with the Effelsberg-100 m telescope toward IRC +10216. It covers the frequency range between 17.8 GHz and 26.3 GHz (K-band). In the circumstellar shell of IRC +10216, we find 78 spectral lines, among which 12 remain unidentified. The identified lines are assigned to 18 different molecules and radicals. A total of 23 lines from species known to exist in this envelope are detected for the first time outside the Solar System and there are additional 20 lines first detected in IRC +10216. The potential orgin of U lines is also discussed. Assuming local thermodynamic equilibrium (LTE), we then determine rotational temperatures and column densities of 17 detected molecules. Molecular abundances relative to H$_{2}$ are also estimated. A non-LTE analysis of NH$_{3}$ shows that the bulk of its emission arises from the inner envelope with a kinetic temperature of 70$pm$20 K. Evidence for NH$_{3}$ emitting gas with higher kinetic temperature is also obtained, and potential abundance differences between various $^{13}$C-bearing isotopologues of HC$_{5}$N are evaluated. Overall, the isotopic $^{12}$C/$^{13}$C ratio is estimated to be 49$pm$9. Finally, a comparison of detected molecules in the $lambda$ $sim$1.3 cm range with the dark cloud TMC-1 indicates that silicate-bearing molecules are more predominant in IRC +10216.
We report on the detection of anhydrous hydrochloric acid (hydrogen chlorine, HCl) in the carbon-rich star IRC+10216 using the spectroscopic facilities onboard the Herschel satellite. Lines from J=1-0 up to J=7-6 have been detected. From the observed intensities, we conclude that HCl is produced in the innermost layers of the circumstellar envelope with an abundance relative to H2 of 5x10^-8 and extends until the molecules reach its photodissociation zone. Upper limits to the column densities of AlH, MgH, CaH, CuH, KH, NaH, FeH, and other diatomic hydrides have also been obtained.
The interstellar medium is enriched primarily by matter ejected from evolved low and intermediate mass stars. The outflows from these stars create a circumstellar envelope in which a rich gas-phase and dust-nucleation chemistry takes place. We observ ed the nearest carbon-rich evolved star, IRC+10216, using the PACS (55-210 {mu}m) and SPIRE (194-672 {mu}m) spectrometers on board Herschel. We find several tens of lines from SiS and SiO, including lines from the v=1 vibrational level. For SiS these transitions range up to J=124-123, corresponding to energies around 6700K, while the highest detectable transition is J=90-89 for SiO, which corresponds to an energy around 8400K. Both species trace the dust formation zone of IRC+10216, and the broad energy ranges involved in their detected transitions permit us to derive the physical properties of the gas and the particular zone in which each species has been formed. This allows us to check the accuracy of chemical thermodynamical equilibrium models and the suggested depletion of SiS and SiO due to accretion onto dust grains.
The J,K = 1,0-0,0 rotational transition of phosphine (PH3) at 267 GHz has been tentatively identified with a T_MB = 40 mK spectral line observed with the IRAM 30-m telescope in the C-star envelope IRC+10216. A radiative transfer model has been used t o fit the observed line profile. The derived PH3 abundance relative to H2 is 6 x 10^(-9), although it may have a large uncertainty due to the lack of knowledge about the spatial distribution of this species. If our identification is correct, it implies that PH3 has a similar abundance to that reported for HCP in this source, and that these two molecules (HCP and PH3) together take up about 5 % of phosphorus in IRC+10216. The abundance of PH3, as that of other hydrides in this source, is not well explained by conventional gas phase LTE and non-LTE chemical models, and may imply formation on grain surfaces.
New high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of I RC+10216. We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J=3 level (three ortho- and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8+-0.5)x10^{-8} for ortho-NH3 and (3.2^{+0.7}_{-0.6})x10^{-8} for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1 sigma confidence level).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا