ترغب بنشر مسار تعليمي؟ اضغط هنا

The Thick-COBRA: a New Gaseous Electron Multiplier for Radiation Detectors

88   0   0.0 ( 0 )
 نشر من قبل Fernando Amaro D.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The operation principle and preliminary results of a novel gas-avalanche patterned hole electron multiplier, the Thick-COBRA (THCOBRA), are presented. This micro-hole structure is derived from the THGEM and MHSP. Sub-millimeter diameter holes are mechanically drilled in a thin G10 plate, Cu-clad on both faces; on one of the faces the Cu is etched to produce additional anode strips winding between circular cathode strips. Primary avalanches occurring within the holes are followed by additional ones at the anode-strips vicinity. Gains in excess of 5*104 were reached with 22.1 x-rays in Ar, Ne and Ar-10%CH4, with 12.2 % FWHM energy resolution in Ar-10%CH4. Higher gains were measured with single photoelectrons. This robust multiplier may have numerous potential applications.



قيم البحث

اقرأ أيضاً

The performance of a Thick-COBRA (THCOBRA) gaseous detector is studied using an optical readout technique. The operation principle of this device is described, highlighting its operation in a gas mixture of Ar/CF4 (80/20%) for visible scintillation l ight emission. The contributions to the total gain from the holes and the anode strips as a function of the applied bias voltage were visualized. The preservation of spatial information from the initial ionizations was demonstrated by analyzing the light emission from 5.9keV X-rays of an 55Fe source. The observed non-uniformity of the scintillation light from the holes supports the claim of a space localization accuracy better than the pitch of the holes. The acquired images were used to identify weak points and sources of instabilities in view of the development of new optimized structures.
439 - M. Gai , D.N. McKinsey , K. Ni 2007
The Yale-Weizmann collaboration aims to develop a low-radioactivity (low-background) cryogenic noble liquid detector for Dark-Matter (DM) search in measurements to be performed deep underground as for example carried out by the XENON collaboration. A major issue is the background induced by natural radioactivity of present-detector components including the Photo Multiplier Tubes (PMT) made from glass with large U-Th content. We propose to use advanced Thick Gaseous Electron Multipliers (THGEM) recently developed at the Weizmann Institute of Science (WIS). These hole-multipliers will measure in a two-phase (liquid/gas) Xe detector electrons extracted into the gas phase from both ionization in the liquid as well as scintillation-induced photoelectrons from a CsI photocathode immersed in LXe. We report on initial tests (in gas) of THGEM made out of Cirlex (Kapton) which is well known to have low Ra-Th content instead of the usual G10 material with high Ra-Th content.
127 - Maxim Titov 2007
Gaseous detectors are fundamental components of all present and planned high energy physics experiments. Over the past decade two representatives (GEM, Micromegas) of the Micro-Pattern Gas Detector (MPGD) concept have become increasingly important; the high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. Novel structures where GEM and Micromegas are directly coupled to the CMOS multi-pixel readout represent an exciting field and allow to reconstruct fine-granularity, two-dimensional images of physics events. Originally developed for the high energy physics, MPGD applications have expanded to astrophysics, neutrino physics, neutron detection and medical imaging.
We have developed and successfully used several innovative designs of detectors with solid photocathodes. The main advantage of these detectors is that rather high gains (>10E4) can be achieved in a single multiplication step. This is possible by, fo r instance, exploiting the secondary electron multiplication and limiting the energy of the steamers by distributed resistivity. The single step approach also allows a very good position resolution to be achieved in some devices: 50 micron on line without applying any treatment method (like center of gravity). The main focus of our report is new fields of applications for these detectors and the optimization of their designs for such purposes.
271 - R. Alon , J. Miyamoto , M. Cortesi 2007
We present the results of our recent studies of a Thick Gaseous Electron Multiplier (THGEM)-based detector, operated in Ar, Xe and Ar:Xe (95:5) at various gas pressures. Avalanche-multiplication properties and energy resolution were investigated with soft x-rays for different detector configurations and parameters. Gains above 10E4 were reached in a double-THGEM detector, at atmospheric pressure, in all gases, in almost all the tested conditions; in Ar:Xe (95:5) similar gains were reached at pressures up to 2 bar. The energy resolution dependence on the gas, pressure, hole geometry and electric fields was studied in detail, yielding in some configurations values below 20% FWHM with 5.9 keV x-rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا