ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovering New Light States at Neutrino Experiments

121   0   0.0 ( 0 )
 نشر من قبل Rouven Essig
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. We show that these experiments have significant sensitivity beyond previous beam dumps, and are able to partially close the gap between laboratory experiments and supernovae constraints on pseudoscalars. Future upgrades to the NuMI beamline and Project X will lead to even greater opportunities for discovery. We also discuss thin target experiments with muon beams, such as those available in COMPASS, and show that they constitute a powerful probe for leptophilic PNGBs.



قيم البحث

اقرأ أيضاً

Searches for pseudoscalar axion-like-particles (ALPs) typically rely on their decay in beam dumps or their conversion into photons in haloscopes and helioscopes. We point out a new experimental direction for ALP probes through their production via th e Primakoff process or Compton-like scattering off of electrons or nuclei. We consider ALPs produced by the intense gamma ray flux available from megawatt-scale nuclear reactors at neutrino experiments through Primakoff-like or Compton-like channels. Low-threshold detectors in close proximity to the core will have visibility to ALP decays and inverse Primakoff and Compton scattering, providing sensitivity to the ALP-photon and ALP-electron couplings. We find that the sensitivity to these couplings at the ongoing MINER neutrino experiment exceeds existing limits set by laboratory experiments and, for the ALP-electron coupling, we forecast the worlds best laboratory-based constraints over a large portion of the sub-MeV ALP mass range.
With the advent of a new generation of neutrino experiments which leverage high-intensity neutrino beams for precision measurements, it is timely to explore physics topics beyond the standard neutrino-related physics. Given that the realm of beyond t he standard model (BSM) physics has been mostly sought at high-energy regimes at colliders, such as the LHC at CERN, the exploration of BSM physics in neutrino experiments will enable complementary measurements at the energy regimes that balance that of the LHC. This is in concert with new ideas for high-intensity beams for fixed target and beam-dump experiments world-wide, e.g., those at CERN. The combination of the high intensity proton beam facilities and massive detectors for precision neutrino oscillation parameter measurements and for CP violation phase measurements will help make BSM physics reachable even in low energy regimes in accelerator based experiments. Large mass detectors with highly precise tracking and energy measurements, excellent timing resolution, and low energy thresholds will enable searches for BSM phenomena from cosmogenic origin, as well. Therefore, it is conceivable that BSM topics in the next generation neutrino experiments could be the dominant physics topics in the foreseeable future, as the precision of the neutrino oscillation parameter and CPV measurements continues to improve. In this spirit, this white paper provides a review of the current landscape of BSM theory in neutrino experiments in two selected areas of the BSM topics - dark matter and neutrino related BSM - and summarizes the current results from existing neutrino experiments to set benchmarks for both theory and experiment. This paper then provides a review of upcoming neutrino experiments throughout the next 10 - 15 year time scale and their capabilities to set the foundation for potential reach in BSM physics in the two aforementioned themes.
259 - Tommy Ohlsson , He Zhang 2008
We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on theta_13. We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings between the fundamental leptonic mixing parameters and the effective leptonic mixing parameters are established. In addition, NSI corrections to the mixing angles theta_13 and theta_12 are discussed in detailed. Finally, we show that, even for a vanishing theta_13, an oscillation phenomenon may still be observed in future short baseline reactor neutrino experiments, such as Double Chooz and Daya Bay, due to the existences of NSIs.
There are broadly three channels to probe axion-like particles (ALPs) produced in the laboratory: through their subsequent decay to Standard Model (SM) particles, their scattering with SM particles, or their subsequent conversion to photons. Decay an d scattering are the most commonly explored channels in beam-dump type experiments, while conversion has typically been utilized by light-shining-through-wall (LSW) experiments. A new class of experiments, dubbed PASSAT (Particle Accelerator helioScopes for Slim Axion-like-particle deTection), has been proposed to make use of the ALP-to-photon conversion in a novel way: ALPs, after being produced in a beam-dump setup, turn into photons in a magnetic field placed near the source. It has been shown that such hybrid beam-dump-helioscope experiments can probe regions of parameter space that have not been investigated by other laboratory-based experiments, hence providing complementary information; in particular, they probe a fundamentally different region than decay or LSW experiments. We propose the implementation of PASSAT in future neutrino experiments, taking a DUNE-like experiment as an example. We demonstrate that the magnetic field in the planned DUNE multi-purpose detector is already capable of probing the ALP-photon coupling down to $g_{agammagamma} sim {rm few}times 10^{-5}$ GeV$^{-1}$ for ALP masses $m_a lesssim 10$ eV. The implementation of a CAST or BabyIAXO-like magnet would improve the sensitivity down to $g_{agammagamma} sim 10^{-6}$ GeV$^{-1}$.
Heavy sterile neutrinos are typically invoked to accommodate the observed neutrino masses, by positing a new Yukawa term connecting these new states to the neutrinos in the electroweak doublet. However, given our ignorance of the neutrino sector we s hould explore additional interactions such sterile neutrinos may have with the SM. In this paper, we study the dimension-5 operator which couples the heavy state to a light neutrino and the photon. We find that the recent XENON1T direct detection data can improve the limits on this Neutrino Dipole Portal by up to an order of magnitude over previous bounds. Future direct detection experiments may be able to extend these bounds down to the level probed by SN1987A.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا