ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry restoration at finite temperature with weak magnetic fields

266   0   0.0 ( 0 )
 نشر من قبل Maria Elena Tejeda-Yeomans
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jorge Navarro




اسأل ChatGPT حول البحث

We study symmetry restoration at finite temperature in the standard model during the electroweak phase transition in the presence of a weak magnetic field. We compute the finite temperature effective potential up to the contribution of ring diagrams, using the broken phase degrees of freedom, and keep track of the gauge parameter dependence of the results. We show that under these conditions, the phase transition becomes stronger first order.

قيم البحث

اقرأ أيضاً

The study of the universes primordial plasma at high temperature plays an important role when tackling different questions in cosmology, such as the origin of the matter-antimatter asymmetry. In the Minimal Standard Model (MSM) neither the amount of CP violation nor the strength of the phase transition are enough to produce and preserve baryon number during the Electroweak Phase Transition (EWPT), which are two of the three ingredients needed to develop baryon asymmetry. In this talk we present the first part of the analysis done within a scenario where it is viable to have improvements to the aforementioned situation: we work with the degrees of freedom in the broken symmetry phase of the MSM and analyze the development of the EWPT in the presence of a weak magnetic field. More specifically, we calculate the particle self-energies that include the effects of the weak magnetic field, needed for the MSM effective potential up to ring diagrams.
168 - Yin-Zhen Xu , Si-Xue Qin , 2021
We study chiral symmetry restoration by analyzing thermal properties of QCDs (pseudo-)Goldstone bosons, especially the pion. The meson properties are obtained from the spectral densities of mesonic imaginary-time correlation functions. To obtain the correlation functions, we solve the Dyson-Schwinger equations and the inhomogeneous Bethe-Salpeter equations in the leading symmetry-preserving rainbow-ladder approximation. In the chiral limit, the pion and its partner sigma degenerate at the critical temperature $T_c$. At $T gtrsim T_c$, it is found that the pion rapidly dissociates, which signals deconfinement phase transition. Beyond the chiral limit, the pion dissociation temperature can be used to define the pseudo-critical temperature of chiral phase crossover, which is consistent with that obtained by the maximum point of the chiral susceptibility. The parallel analysis for kaon and pseudoscalar $sbar{s}$ suggests that heavy mesons may survive above $T_c$.
96 - Marco Ruggieri 2011
I review recent results obtained within chiral effective models, on the phase structure of hot quark matter in a strong magnetic background. After a brief introduction, I focus on the results obtained within two chiral models improved with the Polyak ov loop. The models differ for the content of interactions, but both of them are tuned to reproduce Lattice QCD thermodynamics at zero and imaginary chemical potential. One of them takes into account an explicit Polyakov loop dependence of the coupling; the other one neglects this contribution, but takes into account multi-quark interactions. A comparison between the phase diagrams of the two models is presented.
Traditional computations of the dark matter (DM) relic abundance, for models where attractive self-interactions are mediated by light force-carriers and bound states exist, rely on the solution of a coupled system of classical on-shell Boltzmann equa tions. This idealized description misses important thermal effects caused by the tight coupling among force-carriers and other charged relativistic species. We develop for the first time a comprehensive ab-initio derivation for the description of DM long-range interactions in the presence of a hot and dense plasma background directly from non-equilibrium quantum field theory. Most importantly, the scattering and bound states get strongly mixed in the thermal plasma environment, representing a characteristic difference from a pure vacuum theory computation. The main result of this work is a novel differential equation for the DM number density, written down in a form which is manifestly independent under the choice of what one would interpret as a bound or a scattering state at finite temperature. The collision term, unifying the description of annihilation and bound state decay, turns out to have in general a non-quadratic dependence on the DM number density. This generalizes the form of the conventional Lee-Weinberg equation which is typically adopted to describe the freeze-out process. We prove that our general number density equation is consistent with previous literature results under certain limits.
Modifications of baryon properties due to the restoration of the chiral symmetry in an external hot and dense baryon medium are investigated in an effective chiral quark-meson theory. The nucleon arises as a soliton of the Gell-Mann - Levi $zs$-model , the parameters of which are chosen to be the medium-modified meson values evaluated within the Nambu - Jona-Lasinio model. The nucleon properties are obtained by means of variational projection techniques. The nucleon form factors as well as the nucleon delta transition form factors are evaluated for various densities and temperatures of the medium. Similar to the chiral phase transition line the critical curve in the $T-zr$ plane for delocalization of the nucleon is non-monotonic and this feature is reflected in all nucleon properties. At medium densities of about $(2-3) rnm$ the baryonic phase exists only at intermediate temperatures. For finite temperature and densities the nucleon form factors get strongly reduced at finite transfer momenta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا