ﻻ يوجد ملخص باللغة العربية
A modern graphics processing unit (GPU) is able to perform massively parallel scientific computations at low cost. We extend our implementation of the checkerboard algorithm for the two dimensional Ising model [T. Preis et al., J. Comp. Phys. 228, 4468 (2009)] in order to overcome the memory limitations of a single GPU which enables us to simulate significantly larger systems. Using multi-spin coding techniques, we are able to accelerate simulations on a single GPU by factors up to 35 compared to an optimized single Central Processor Unit (CPU) core implementation which employs multi-spin coding. By combining the Compute Unified Device Architecture (CUDA) with the Message Parsing Interface (MPI) on the CPU level, a single Ising lattice can be updated by a cluster of GPUs in parallel. For large systems, the computation time scales nearly linearly with the number of GPUs used. As proof of concept we reproduce the critical temperature of the 2D Ising model using finite size scaling techniques.
Ising Monte Carlo simulations of the random-field Ising system Fe(0.80)Zn(0.20)F2 are presented for H=10T. The specific heat critical behavior is consistent with alpha approximately 0 and the staggered magnetization with beta approximately 0.25 +- 0.03.
Monte Carlo rendering algorithms are widely used to produce photorealistic computer graphics images. However, these algorithms need to sample a substantial amount of rays per pixel to enable proper global illumination and thus require an immense amou
Using the Ehrenfest urn model we illustrate the subtleties of error estimation in Monte Carlo simulations. We discuss how the smooth results of correlated sampling in Markov chains can fool ones perception of the accuracy of the data, and show (via n
We present MadFlow, a first general multi-purpose framework for Monte Carlo (MC) event simulation of particle physics processes designed to take full advantage of hardware accelerators, in particular, graphics processing units (GPUs). The automation
In this work we study the thermodynamic properties of ultrathin ferromagnetic dots using Monte Carlo simulations. We investigate the vortex density as a function of the temperature and the vortex structure in monolayer dots with perpendicular anisotr