ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-GPU Accelerated Multi-Spin Monte Carlo Simulations of the 2D Ising Model

125   0   0.0 ( 0 )
 نشر من قبل Tobias Preis
 تاريخ النشر 2010
والبحث باللغة English




اسأل ChatGPT حول البحث

A modern graphics processing unit (GPU) is able to perform massively parallel scientific computations at low cost. We extend our implementation of the checkerboard algorithm for the two dimensional Ising model [T. Preis et al., J. Comp. Phys. 228, 4468 (2009)] in order to overcome the memory limitations of a single GPU which enables us to simulate significantly larger systems. Using multi-spin coding techniques, we are able to accelerate simulations on a single GPU by factors up to 35 compared to an optimized single Central Processor Unit (CPU) core implementation which employs multi-spin coding. By combining the Compute Unified Device Architecture (CUDA) with the Message Parsing Interface (MPI) on the CPU level, a single Ising lattice can be updated by a cluster of GPUs in parallel. For large systems, the computation time scales nearly linearly with the number of GPUs used. As proof of concept we reproduce the critical temperature of the 2D Ising model using finite size scaling techniques.



قيم البحث

اقرأ أيضاً

Ising Monte Carlo simulations of the random-field Ising system Fe(0.80)Zn(0.20)F2 are presented for H=10T. The specific heat critical behavior is consistent with alpha approximately 0 and the staggered magnetization with beta approximately 0.25 +- 0.03.
Monte Carlo rendering algorithms are widely used to produce photorealistic computer graphics images. However, these algorithms need to sample a substantial amount of rays per pixel to enable proper global illumination and thus require an immense amou nt of computation. In this paper, we present a hybrid rendering method to speed up Monte Carlo rendering algorithms. Our method first generates t
Using the Ehrenfest urn model we illustrate the subtleties of error estimation in Monte Carlo simulations. We discuss how the smooth results of correlated sampling in Markov chains can fool ones perception of the accuracy of the data, and show (via n umerical and analytical methods) how to obtain reliable error estimates from correlated samples.
We present MadFlow, a first general multi-purpose framework for Monte Carlo (MC) event simulation of particle physics processes designed to take full advantage of hardware accelerators, in particular, graphics processing units (GPUs). The automation process of generating all the required components for MC simulation of a generic physics process and its deployment on hardware accelerator is still a big challenge nowadays. In order to solve this challenge, we design a workflow and code library which provides to the user the possibility to simulate custom processes through the MadGraph5_aMC@NLO framework and a plugin for the generation and exporting of specialized code in a GPU-like format. The exported code includes analytic expressions for matrix elements and phase space. The simulation is performed using the VegasFlow and PDFFlow libraries which deploy automatically the full simulation on systems with different hardware acceleration capabilities, such as multi-threading CPU, single-GPU and multi-GPU setups. The package also provides an asynchronous unweighted events procedure to store simulation results. Crucially, although only Leading Order is automatized, the library provides all ingredients necessary to build full complex Monte Carlo simulators in a modern, extensible and maintainable way. We show simulation results at leading-order for multiple processes on different hardware configurations.
In this work we study the thermodynamic properties of ultrathin ferromagnetic dots using Monte Carlo simulations. We investigate the vortex density as a function of the temperature and the vortex structure in monolayer dots with perpendicular anisotr opy and long-range dipole interaction. The interplay between these two terms in the hamiltonian leads to an interesting behavior of the thermodynamic quantities as well as the vortex density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا